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Genomic prediction and allele
mining of agronomic and
morphological traits in pea
(Pisum sativum)
germplasm collections
Margherita Crosta1,2, Massimo Romani1, Nelson Nazzicari1,
Barbara Ferrari 1 and Paolo Annicchiarico1*

1Council for Agricultural Research and Economics (CREA), Research Centre for Animal
Production and Aquaculture, Lodi, Italy, 2Department of Sustainable Crop Production, Catholic
University of Sacred Heart, Piacenza, Italy
Well-performing genomic prediction (GP) models for polygenic traits and

molecular marker sets for oligogenic traits could be useful for identifying

promising genetic resources in germplasm collections, setting core

collections, and establishing molecular variety distinction. This study aimed

at (i) defining GP models and key marker sets for predicting 15 agronomic or

morphological traits in germplasm collections, (ii) verifying the GP model

usefulness also for selection in breeding programs, (iii) investigating the

consistency between molecular and phenotypic diversity patterns, and (iv)

identifying genomic regions associated with to the target traits. The study

was based on phenotyping data and over 41,000 genotyping-by-

sequencing-generated SNP markers of 220 landraces or old cultivars

belonging to a world germplasm collection and 11 modern cultivars. Non-

metric multi-dimensional scaling (NMDS) and an analysis of population

genetic structure indicated a high level of genetic differentiation of material

from Western Asia, a major West-East diversity gradient, and quite limited

genetic diversity of the improved germplasm. Mantel’s test revealed a low

correlation (r = 0.12) between phenotypic and molecular diversity, which

increased (r = 0.45) when considering only the molecular diversity relative to

significant SNPs from genome-wide association analyses. These analyses

identified, inter alia, several areas of chromosome 6 involved in a largely

pleiotropic control of vegetative or reproductive organ pigmentation. We

found various significant SNPs for grain and straw yield under severe drought

and onset of flowering, and one SNP on chromosome 5 for grain protein

content. GPmodels displayedmoderately high predictive ability (0.43 to 0.61)

for protein content, grain and straw yield, and onset of flowering, and high

predictive ability (0.76) for individual seed weight, based on intra-population,

intra-environment cross-validations. The inter-population, inter-

environment assessment of the models trained on the germplasm

collection for breeding material of three recombinant inbred line (RIL)

populations, which was challenged by much narrower diversity of the

material, over eight-fold less available markers and quite different test
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environments, led to an overall loss of predictive ability of about 40% for seed

weight, 50% for protein content and straw yield, and 60% for onset of

flowering, and no prediction for grain yield. Within-RIL population

predictive ability differed among populations.
KEYWORDS

crop quality, drought tolerance, genetic structure, genomic selection, grain yield,
grain protein content, molecular distinctness, trait genetic architecture
1 Introduction

Enhancing grain legume cultivation is of paramount

importance for European agriculture to improve its sustainability

in terms of soil fertility, energy efficiency, greenhouse gas emissions

and crop biodiversity (Watson et al., 2017; Barbieri et al., 2021;

Billen et al., 2021) and to increase its self-sufficiency for high-

protein feedstuff (currently amounting to 45%). Indeed, the

proportion of grain legume-cultivated area in Europe is almost

ten-fold lower than that in the rest of the world (1.5% vs. 14.5%;

Watson et al., 2017). Plant breeding can be pivotal, to reduce the

profitability gap with cereals that limits the cultivation of legumes

(Rubiales et al., 2021). Field pea (Pisum sativum L.) is a grain

legume with high interest for cultivation in Southern and Western

Europe, because of its high yielding ability compared with other

cool-season grain legumes (Carrouée et al., 2003; Annicchiarico,

2008). However, its protein yield per unit of area may be lower than

that of some other cool-season grain legume species, e.g., white

lupin (Annicchiarico, 2008; Cernay et al., 2016), because of only

moderate seed protein content, whose improvement is therefore a

major breeding objective (Duc et al., 2015). While modern

commercial cultivars display seed protein content on the dry

matter mostly in the range of 22-24%, landrace or old cultivar

material may achieve values of 27-30% (Coyne et al., 2005; Jha et al.,

2015; Annicchiarico et al., 2017). Another key breeding target,

especially in Southern Europe and in the context of climate

change, is greater yielding ability under severe drought (Bagheri

et al., 2023), another feature for which landrace germplasm could be

a valuable genetic resource (Annicchiarico et al., 2017).

Pea has a long history of domestication whose first steps date

back to about 9,000 years BC in the Fertile Crescent (Zohary and

Hopf, 1973), with a later domestication event in Abyssinia that gave

rise to P. sativum L. subsp. abyssinicum (presently grown in

Ethiopia and Yemen) (Trněný et al., 2018; Weeden, 2018). Several

ex-situ pea germplasm collections have been established with the

goal of preserving the outstanding biodiversity generated during

this long and geographically-diversified domestication process.

They include, on the whole, over 55,000 accessions (Smýkal et al.,

2008), with major collections hosted by the Vavilov Institute of

Plant Genetic Resources, the Australian Temperate Field Crops

Collection, and the United States Department of Agriculture
02
(Smýkal et al., 2012). A key issue to enable the exploitation of

this huge amount of genetic resources for breeding purposes is the

establishment of an effective criterion for the definition of core

collections, which should include a reduced number of accessions to

allow phenotypic characterization at a reasonable cost while

maximizing the genetic variability for traits of possible interest.

The site of origin according to passport data has frequently been

used as the criterion for selection of germplasm accessions to be

included in core collections, in the absence of relevant morpho-

physiological and agronomic information (Knüpffer and Van

Hintum, 1995). The exploitation of molecular information

represents an alternative to the use of passport data for the

selection of accessions featuring large diversity for useful traits,

considering that next-generation sequencing techniques have

substantially lowered the genotyping costs (Elshire et al., 2011;

Taranto et al., 2018; Singh et al., 2019). Methods based on DNA

reduced-representation libraries, such as genotyping-by-sequencing

(GBS), are particularly suitable for species featuring a large genome,

such as pea (∼ 4.45 Gb), for which whole genome re-sequencing of a

large number of individuals would hardly be affordable (Kreplak

et al., 2019; Pavan et al., 2020). Pea core collections set up according

to marker data have already been proposed (Jing et al., 2012;

Holdsworth et al., 2017), but a prerequisite for their practical

usefulness for breeders is a reasonable consistency between

molecular and phenotypic variation patterns. Such a consistency

emerged in one pea study relative to a collection of 148 cultivars,

breeding lines, and landraces genotyped with 121 protein- and

PCR-based markers (Baranger et al., 2004), but failed to emerge in

several studies carried out on different forage legumes, such as

alfalfa (Crochemore et al., 1998), red clover (Greene et al., 2004;

Pagnotta et al., 2011), and white clover (Kolliker et al., 2001). Pea

molecular diversity studies, however, displayed variation patterns

reflecting domestication (cultivated vs. wild types), phenological

type, end-use (fodder, food or feed), and provenance from specific

geographic regions, such as Eastern Africa, or Central and Eastern

Asia (Baranger et al., 2004; Zong et al., 2009; Jing et al., 2010;

Smýkal et al., 2011; Jing et al., 2012; Holdsworth et al., 2017; Siol

et al . , 2017; Hellwig et al . , 2022; Pavan et al. , 2022;

Rispail et al., 2023).

A different approach to enhance the exploitation of large

germplasm collections is the genotyping of the entire collection
frontiersin.org
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and the development of genomic prediction (GP) models trained on

a subset of accessions to predict trait values of other accessions in

germplasm collections and possibly in breeding populations.

Prediction models proved valuable for pea breeding values of

recombinant inbred lines for key polygenic traits such as crop

yield in moisture-favorable (Annicchiarico et al., 2019b) and

drought-prone environments (Annicchiarico et al., 2020), and

protein content (Crosta et al., 2022) in pioneer studies. Other

studies of yield prediction for grain legume germplasm accessions

were encouraging, revealing predictive ability values not lower than

0.45 in soybean (Jarquıń et al., 2016) and 0.40 in white lupin

(Annicchiarico et al., 2019a) for the challenging scenario of cross-

environment predictions (where model construction and validation

are performed on data from distinct environments). Predictive

ability values for large pea diversity panels including wild-relative

genotypes, landraces and modern cultivars were reportedly

moderate for grain yield and number of seeds per pod (Al Bari

et al., 2021), high for number of seeds per plant and individual seed

weight (>0.70) (Tayeh et al. (2015), and high (0.60-0.78) for onset of

flowering (Tayeh et al., 2015; Al Bari et al., 2021). Molecular

marker-based prediction of qualitative traits may also be useful in

some cases, e.g., flower color, which is reportedly associated with

seed tannin content, a trait potentially affecting grain protein

digestibility in monogastric animals (Grosjean et al., 1998). The

application of a genomic selection model constructed for a genetic

base for predictions in another genetic base implies a penalty whose

extent requires investigation. The predictive ability loss tended to be

in the range of 40-50% for pea grain yield, protein content and other

traits for inter-population predictions across RIL populations

having one parent in common (Annicchiarico et al., 2019b;

Annicchiarico et al., 2020; Crosta et al., 2022), while being

unknown for other types of genetic bases.

The ever-increasing number of crop varieties, which approaches

3,400 cultivars in Europe and 6,000 globally for pea (Rubiales et al.,

2021), complicates the assessment of the distinctness requirement

according to morphological traits that is prescribed for the

registration of new varieties according to UPOV (International

Union for the Protection of New Varieties of Plants) regulations.

Molecular-marker based distinctness has been advocated as a

potentially quicker, more sensitive and lower-cost criterion to

distinguish plant varieties compared with morphological trait-

based distinctness used for verification of DUS (Distinctness,

Uniformity and Stability) requirements for variety registration

(Achard et al., 2020; Gilliland et al., 2020; Jamali et al., 2020).

Molecular marker-based distinctness has been proposed as a

complement or a substitute for the ordinary distinctness

assessment in the presence of a reliable relationship with

morphological trait-based diversity (Jones et al., 2013), a

condition pending verification for pea. An ideal method of

marker-based distinctness may rely on markers associated with

morphological traits currently used for variety discrimination

(UPOV, 2019).

The present study is based on phenotypic data collected by

Annicchiarico et al. (2017) for a pea world germplasm collection

including landraces, old cultivars and modern cultivars and GBS

data for the same material reported in Pavan et al. (2022). Its
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objectives are: (a) to perform a genome-wide association study

(GWAS) for seed protein content, grain yield under severe terminal

drought, and other traits of possible interest for pea breeding or

variety distinction; (b) to test the ability of GP models for protein

content and other quantitative traits developed on the current

germplasm panel to predict these traits in germplasm accessions

and in breeding material as represented by an independent and

much narrower genetic base including three Recombinant Inbred

Line (RIL) populations evaluated in other Italian environments in

earlier studies (Annicchiarico et al., 2019b; Crosta et al., 2022); (c) to

investigate the consistency between molecular marker-based and

phenotypic diversity patterns; (d) to verify the correspondence in

terms of genomic position between genes that have already been

cloned for qualitative traits and genomic regions highlighted as

significantly associated to these traits by GWAS, and to detect yet

unidentified genomic regions and alleles controlling qualitative and

quantitative trait variation.
2 Materials and methods

2.1 Plant material and phenotyping

The study was based on 220 cultivated pea (P. sativum subsp.

sativum) landraces and old cultivars belonging to 19 regional

germplasm pools and 11 modern cultivars bred in France (Attika,

Cartuce, Dove, Enduro, Genial, Isard, Messire, Spirale), Spain

(Cigarron, Viriato) or Germany (Santana), evaluated by

(Annicchiarico et al. (2017); Supplementary Table 1). This

collection was set up by pooling selected accessions that were

provided by IPK (Gatersleben), INRAE UMRLEG (Dijon), John

Innes Centre (Norwich), CNR-IGV (Bari) and ICARDA’s gene

bank. These institutions were asked to provide accessions which,

according to the available knowledge, were able to maximize the

genetic diversity within each country gene pool that was addressed

by our request. A previous study (Pavan et al., 2022) confirmed the

wide genetic variation and the absence of duplicates among the

accessions represented in this collection.

This material was evaluated by Annicchiarico et al. (2017) in

Lodi, Northern Italy (45°19’N, 9°03’E), in a spring-sown rain-fed field

experiment designed as a randomized complete block with two

replications. This experiment was characterized by substantial

terminal drought associated with a rainfall amount of 178 mm over

the crop cycle. The following traits were recorded on a plot basis: (i)

dry grain yield (ii) dry aerial biomass, from which straw yield was

derived by subtracting grain yield; (iii) onset of flowering (as days

from January 1 to when 50% of the plants had the first open flower);

(iv) individual seed weight; (v) color of the standard and of the rest of

the flower (keel and wings), (vi) seed protein content, according to

the Near Infrared Spectroscopy method as described in

Annicchiarico et al. (2017); (vii) seed coat and hilum pigmentation,

seed coat marbling and spotting, and cotyledon color and wrinkling,

which were determined on the seed produced by the single plants

employed for genotyping. Other experiment details can be found in

Annicchiarico et al. (2017). Heterogeneity emerged occasionally for

some morphological trait within landrace populations and even
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within progenies of individual plants, leading to exclusion of the

accession from analyses for the relevant trait. In addition, we

recorded anthocyanin pigmentation at stipule insertion on 160

accessions (158 landraces and two modern cultivars) in an

unreplicated seed multiplication experiment performed during

2009 in Lodi.

A validation set for GP models developed for quantitative traits

was represented by three RIL populations issued by connected crosses

between three parent cultivars (Attika and Isard, of European origin;

Kaspa, bred in Australia) that featured high and stable grain yield

across Italian environments in earlier variety testing. This set

included 306 lines that were evaluated by Annicchiarico et al.

(2019b) and Crosta et al. (2022) for grain yield, grain protein

content, onset of flowering and individual seed weight across three

environments of Northern or Central Italy, and straw yield across two

of these environments. Details about the experimental settings are

given in these reports. These environments differed from the

evaluation environment of the germplasm collection in various

respects: they were autumn-sown, which implied substantial winter

low temperature stress (particularly in one environment), more

moisture-favorable (with at least 500 mm rainfall over the crop

cycle), and managed organically.
2.2 Trait interrelationships

A chi-square test of independence (Rayner et al., 2011) was

performed for all pairwise combinations of qualitative traits, which

were expressed in a binary form, to investigate the occurrence of

trait covariation. The phi coefficient (Guilford, 1941) was computed

for each trait combination, providing a measure of the intensity and

direction of association of the two variables. Other statistical

analyses relative to variation and covariation of quantitative traits

were reported in Annicchiarico et al. (2017).
2.3 DNA isolation, GBS library construction,
and sequencing

For DNA extraction, one plant per accession was selected that

represented the morphological characteristics of the entire

accession based on visual observations. Information on DNA

isolation and GBS-based genotyping can be found in Pavan et al.

(2022) for the 231 accessions of the germplasm collection, and in

Annicchiarico et al. (2019b) for lines belonging to the three RIL

populations. The GBS analysis was outsourced to the Elshire Group

by adopting Elshire et al.’s (2011) protocol with modifications, that

is, using the ApeKI restriction enzyme and KAPA Taq polymerase.

The raw reads of accessions from the germplasm collection were

pre-processed by Trimmomatic Version 0.39 (Bolger et al., 2014),

aligned against pea reference genome v1a (Kreplak et al., 2019) by

Burrows-Wheeler Aligner (Li and Durbin, 2009), and subjected to

quality control and SNP calling within the dDocent pipeline (Puritz

et al., 2014). Biallelic SNPs were selected and filtered for minor allele

frequency (MAF) > 5%, missing rate < 20%, and heterozygosity rate

< 30%, while accessions were filtered for missing rate < 25%.
Frontiers in Plant Science 04
The raw data of genotypes from the RIL populations were

demultiplexed by axe demultiplexer (Murray and Borevitz, 2018),

while pre-processing, alignment on reference genome version 1a

(Kreplak et al., 2019) and SNP calling were performed by using the

dDocent pipeline (Puritz et al., 2014). The final genotype matrix, in

the form of a vcf file, was filtered for quality using the vcftool

software (Danecek et al., 2011) with parameters –minQ 30, –max-

non-ref-af 1, and –non-ref-af 0.001. RIL genotype data were merged

with molecular data from the germplasm collection. Filtering of

polymorphic SNPs was performed according to MAF > 5%, missing

rate < 20%, and heterozygosity rate < 30%, while accessions were

filtered for missing rate < 25%. Missing data were estimated by k

nearest neighbour imputation method (Andridge and Little, 2010).
2.4 Analysis of phenotypic and genetic
diversity patterns

Non-metric multi-dimensional scaling (NMDS; Kruskal, 1964)

was applied to both phenotypic and molecular data of the

germplasm collection, to provide a concise representation of

accession diversity patterns and their consistency with geographic

provenance for these information layers. NMDS was adopted in

place of classical MDS, since the genetic dissimilarity coefficient that

appeared more suitable for our genotype data, namely, Rogers’

distance (Rogers, 1972), is non-Euclidean (Gower and Legendre,

1986), whereas the Euclidean property represents a key assumption

of classical MDS (Gower, 1985). Genotype data used for Rogers’

distance computation were pruned for linkage disequilibrium (LD)

by snp.pruning() function from R package ASRgenomics, as

suggested to avoid the strong influence of SNP clusters when

estimating genetic relatedness (Laurie et al., 2010). A maximum

r2 threshold of 0.2, a window size of 50 SNPs, and an overlap of 5

SNPs between consecutive windows were employed on the dataset

formed by SNPs of known genomic position, generating a set of

11,072 SNPs. Dissimilarity for both qualitative and quantitative

phenotypic traits, except for anthocyanin pigmentation at stipule

insertion (which was eliminated from this analysis due to many

accessions having missing data), was estimated by Gower’s distance

(Gower, 1985). We investigated the correlation between genetic and

phenotypic dissimilarity matrices by Mantel’s test (Mantel, 1967)

using mantel() function from R package vegan (Dixon, 2003). The

correlation between molecular and phenotypic diversity matrices

was assessed with respect to all the SNPs on the one hand, and only

the SNPs selected by the GWAS (including the significant SNPs for

quantitative traits and the most significant SNP identified for each

association peak of qualitative traits) on the other hand. This way,

we verified the occurrence of a sharp rise of the correlation for a

scenario of major interest for the molecular marker-based

distinctness of variety germplasm in novel DUS procedures.
2.5 Analysis of population genetic structure

An analysis of population genetic structure was performed by

the snmf() and Q() functions from the R package LEA (Frichot and
frontiersin.org
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François, 2015), which relies on different algorithms compared to

STRUCTURE (Pritchard et al., 2000) but gives similar outputs and

is considered more accurate for self-pollinating species (Frichot

et al., 2014). Genotype data pruned for excess of LD as described in

section 2.5 were employed. The optimal number of genetic clusters

was visually selected based on the plot of the cross-entropy

parameter, which was estimated by cross-validation (Alexander

and Lange, 2011; Frichot et al., 2014). Genotypes were assigned to

a cluster when featuring a minimum membership coefficient of

60%, otherwise they were classified as admixed.
2.6 Genome-wide association study and
linkage disequilibrium decay

Population structure information to be included in the GWAS

model was obtained by a Discriminant Analysis of Principal

Components (DAPC; Yendle and MacFie, 1989) performed on

genotype data pruned for excess of LD, as described in section 2.5.

The k-means clustering algorithm was run iteratively for increasing

values of K (i.e., numbers of genotype groups) from 1 to 30, to

identify its optimal value according to differences between

successive values of the Bayesian information criterion. The

analysis was performed on the output of an ordinary principal

component analysis to benefit from its dimensionality reduction but

keeping all the components to avoid information loss. We

performed the final DAPC by using the optimal K value. The

number of principal components (PCs) to be retained for DAPC,

and that of discriminant functions to be used as covariates in

GWAS models, were determined by visual inspection of plots of PC

cumulative variance and discriminant function eigenvalues,

respectively. Based on this operation, 150 PCs were considered

for DAPC and 8 discriminant functions were employed as GWAS

covariates. The whole procedure was implemented by using the

functions find.clusters() and dapc() from R package adegenet

(Jombart and Ahmed, 2011).

LD was estimated as r2 value for pairwise combinations of SNPs

within a 100 kb window by LD.decay() function from R package

sommer (Covarrubias-Pazaran, 2016). The r2 values were plotted

against physical distance and fitted by a polynomial curve as

described in Marroni et al. (2011). The 90th percentile of the r2

distribution for pairwise combinations of SNPs located on different

chromosomes was estimated by setting argument unlinked to

TRUE in LD.decay() function, to assess the most meaningful LD

decay threshold for candidate gene research in our dataset.

A GWAS was performed on 41,114 polymorphic SNPs

according to (i) the Blink model (Huang et al., 2019) in R

package GAPIT3 (Wang and Zhang, 2021) for quantitative traits,

and (ii) a mixed logistic regression model by association.test.logistic

() function from R package milorGWAS (Milet et al., 2020) for

qualitative traits, which were unfitted to linear regression models

due to their binary nature (Chen et al., 2016). The GWAS model for

qualitative traits included the kinship matrix estimated by GRM()

function from R package gaston as a covariate beside the DAPC

components. To get an unbiased visual representation of type I
Frontiers in Plant Science 05
errors (Chen et al., 2016), stratified quantile-quantile (QQ) plots

were generated for qualitative traits by SNP.category() and

qqplot.pvalues() functions from R package milorGWAS. These

functions rely on the classification of SNPs in three categories

depending on the ratio of expected variances in different population

strata (Milet et al., 2020), which in our case were defined by DAPC

cluster membership. Visual examination of QQ plots for both

qualitative (Supplementary Figure 1) and quantitative traits

(Supplementary Figure 2) highlighted an appropriate

compensation of population structure by GWAS model

covariates, except for hilum pigmentation, seed coat marbling,

and cotyledon wrinkling, which exhibited either some over- or

under-compensation depending on the relevant SNP category. A

Bonferroni threshold of 5% was employed to select significant SNPs

for all traits. The exact genomic position of previously cloned genes

controlling qualitative traits was determined by BLAST alignment

of either DNA or protein sequences and selection of genomic

sequences showing 100% homology.
2.7 Genomic regression models

Genomic predictions were investigated for all quantitative

traits (grain yield, straw yield, protein content, onset of

flowering, and individual seed weight) by using three statistical

models, namely, Ridge regression BLUP (rrBLUP; Meuwissen

et al., 2001), BayesC (Habier et al., 2011), and Bayesian Lasso

(Park and Casella, 2008) within the R package GROAN (Nazzicari

and Biscarini, 2017). The rrBLUP model assumes that marker

effects have a common variance, which makes it more suitable for

traits controlled by a large number of quantitative trait loci (QTL)

with a small effect, whereas Bayesian models assume relatively few

markers with large effects, therefore allowing for different marker

effects and variances (Wang et al., 2018). Predictions were

assessed for two scenarios. The former, which relied on 41,114

SNPs for GP model construction, consisted in a ten-fold non-

stratified cross-validation performed on germplasm collection

data with 50 repetitions for rrBLUP and 10 for Bayesian models.

Predictive ability results (rAb, computed as Pearson’s correlation

between the observed phenotypic values and those predicted by

the model) were obtained by averaging repetition values. The

latter, more challenging scenario envisaged an inter-population,

inter-environment validation of GP models, which were

constructed from data of the germplasm collection and were

validated for predictive ability on data of each RIL population

and on the pooled data of the populations (the latter representing

a more diversified breeding line panel relative to the individual

populations). Only 4,929 SNPs shared by the germplasm

collection and the RIL material were available for GP model

validation. Recombinant inbred line data were previously

averaged across validation environments from Northern and

Central Italy, which belong to the same target region (meaning

that the within-site year-to-year climatic variation affects the

genotype yield responses more than the geographic distance

between sites: Annicchiarico and Iannucci, 2008).
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3 Results

3.1 Phenotypic variation and
trait interrelationships

Phenotypic variation within geographic pools resulted

significant at p < 0.01 for all quantitative traits in Annicchiarico

et al. (2017), to which we refer for further details about the

variability within and between pools. The high impact of terminal

drought was confirmed by the low mean grain yield (about 1.1 t/ha)

displayed by the material. On average, modern cultivars, compared

with the traditional germplasm, displayed lower grain and straw

yield in spite of an earlier flowering, similar protein content, and

higher individual seed weight (Table 1). However, the range of

phenotypic variation was remarkably larger for the landrace and old

cultivar group compared with the improved variety group for all the

quantitative traits (Table 1). Broad-sense heritability values were

fairly modest for grain yield, moderately high for straw yield and

protein content, and very high for onset of flowering and individual

seed weight (Table 1). The modern cultivars were semi-leafless and

mostly displayed a white flower, in contrast with the traditional

germplasm that was leafy and with a higher proportion of purple-

flowered genotypes (Table 2). Yellow cotyledon color, smooth

cotyledon and white hilum were the dominant phenotypes in

both landrace and old cultivar material and in modern

germplasm (in which no seed showed wrinkling or a pigmented

hilum) (Table 2). Seed coat pigmentation, marbling, and spotting,

and anthocyanin pigmentation of stipules were relatively frequent

phenotypes in the traditional germplasm, while being completely

absent or rare in modern cultivars (Table 2).

Chi-square tests of independence highlighted several significant

associations between qualitative traits. High positive associations

were observed among all the traits related to pigmentation of

vegetative or reproductive organs, namely, stipule pigmentation,

purple flower standard, purple flower keel and wings, and

pigmented seed coat (phi coefficient ≥ 0.72, p < 0.001) (Table 3).

High phenotypic correlation (r ≥ 0.70) among quantitative traits

was only observed between grain and straw yield, while no

correlation emerged between grain yield and protein content (r =

0.01), as reported more in detail in Annicchiarico et al. (2017).
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3.2 Analysis of phenotypic and genetic
diversity patterns

The value of the NMDS stress function, representing a measure

of rank-order disagreement between observed and fitted distances,

was equal to 0.15 and 0.21 for phenotypic and molecular data,

respectively. The higher and somewhat sub-optimal stress value

found for molecular data could be related to their much greater

number of original variables (SNPs) compared with phenotypic

data (implying greater information loss by the two-dimensional

representation). The NMDS performed on phenotypic data

revealed no distinct pattern of variation related to the geographic

origin of the material, albeit with a trend of European landraces and

modern cultivars towards positive values along the first axis

(Figure 1A). The morphological diversity of the modern cultivars

bred in France, Spain or Germany was distinctly narrower than that

of the traditional germplasm from these countries (Figure 1A).

Although the diversity patterns based on molecular data were

poorly related to the geographic origin of the material, various

accessions for China, Afghanistan and Maghreb stood out for being

genetically distinct from the rest of the germplasm (Figure 1B). The

modern germplasm revealed particularly narrow genetic diversity

on the ground of molecular data (Figure 1B). Mantel’s test

highlighted quite a modest albeit significant correlation (r = 0.12,

p < 0.01) between accession dissimilarity matrices based on

phenotypic and overall molecular information. The correlation

increased remarkably (r = 0.45) when the analysis referred only

to the molecular information accounted for by significant SNPs

detected by GWAS analyses reported afterwards.
3.3 Analysis of population genetic structure

The optimal number of genetic clusters was equal to 9

(Supplementary Figure 3). This classification analysis confirmed

the results of the NMDS with respect to the quite restricted

molecular diversity of the improved variety pool, of which the

large majority of genotypes was assigned to the same cluster (violet

cluster in Figure 2). The same cluster accommodated most of the

landrace and old cultivar accessions from Western Europe, the
TABLE 1 Mean, range of variation, and broad-sense heritability (H2) estimated on a genotype mean basis, for five quantitative traits measured on a
world pea germplasm collection of 220 landraces from 19 regional pools and 11 modern cultivars.

Trait

Landraces Improved varieties

H2Mean Range Mean Range

Grain yield (t/ha) 1.11 0.16 - 3.30 0.85 0.31 - 2.03 0.47

Straw yield (t/ha) 2.01 0.47 - 5.73 1.62 0.88 - 2.89 0.70

Protein content (g/100 g) 22.8 17.5 – 27.8 22.8 20.4 - 23.2 0.68

Onset of flowering (dd from Jan. 1) 133 113 - 154 131 127 - 136 0.87

Individual seed weight (mg) 138 52 - 277 157 107 - 211 0.91
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region in which most of the modern germplasm originated

(Figure 2). Southern Europe material included some admixed

genotypes, but also showed some genetic specificity as revealed by

many accessions attributable to a single cluster (the light green one

in Figure 2). Asian pools were highly differentiated both from each

other and from material from other continents, with some clusters

that showed up only in specific geographic pools, as in the cases of

Western Asia (fuchsia color in Figure 2), South-Central Asia as
Frontiers in Plant Science 07
represented by Afghanistan, Nepal, and India (brown color in

Figure 2), and China (grey color in Figure 2). Differentiation

emerged also for a subset of the Ethiopian accessions (orange

color in Figure 2). Most of the remaining geographic pools were

largely characterized by admixed genotypes (Figure 2).
3.4 Genome-wide association study and
linkage disequilibrium decay

On average, LD reached half of its 90th percentile (r2 = 0.38) at

217 bp, with single chromosome values ranging from 146 bp for

chromosome 2 to 326 bp for chromosome 4 (Supplementary

Figure 4). The 90th percentile of the r2 distribution for pairwise

combinations of SNPs located on different chromosomes resulted

equal to 0.05 and was reached at 10,140 bp on average

(Supplementary Figure 4). The mean distance at which r2

dropped to 0.05 on a specific chromosome was scanned in both

directions from each significant SNP on that chromosome to look

for candidate genes.

The DAPC was performed by adopting K = 16 as the optimal

group number. Various accessions from Western Asia stood out as

quite different from other germplasm pools in the space of the first

two axes of the DAPC (Supplementary Figure 5). The list of

significant SNPs detected for qualitative and quantitative traits is

provided in Supplementary Table 2 along with additional

information about their MAF and estimated effect, while a list of

the relative candidate genes is reported in Supplementary Table 3.

Significant SNPs were found in the same genomic regions of

previously cloned genes for flower standard, keel and wing

pigmentation (Hellens et al., 2010), hilum pigmentation

(Balarynová et al., 2022), and cotyledon wrinkling (Bhattacharyya

et al., 1990) (Figure 3; Supplementary Table 3). Although the

significant SNPs appeared quite close to the cloned sequences for

all traits, chromosome estimates of LD decay prevented us from

inferring a clear linkage. Therefore, we estimated the LD between the

significant SNPs and the first SNP on the opposite side of the cloned

locus. For all traits, r2 values higher than the empirical threshold of

0.05 were found between one or more significant SNPs and one or

more SNPs on the opposite side of the cloned locus, supporting the

potential correspondence between the observed association peaks and

the previously cloned genes (Supplementary Table 4).

The GWAS confirmed the largely pleiotropic control of traits

related to pigmentation of vegetative or reproductive organs that was

suggested by estimates of phi coefficients. Seven significant SNPs were

found for the color of the flower standard (Figure 3). Six of them

formed a single peak on chromosome 6 (ranging between 67.6 and

68.4Mb) close to the A locus that encodes a transcription factor likely

involved in the regulation of the anthocyanin pathway (Hellens et al.,

2010), while the remaining SNP determined a second peak on the

same chromosome at 235.6 Mb (Supplementary Table 2). The two

SNPs featuring the highest significance level for standard color,

mapping in the peak potentially linked to the A locus,

corresponded to the only two significant SNPs found for keel and

wing color (Figure 3; Supplementary Table 2). For anthocyanin

pigmentation of stipules, we identified five significant SNPs on
TABLE 2 Qualitative traits of a world pea germplasm collection of 220
landraces from 19 regional pools and 11 modern cultivars.

Trait Landracesa Improved
varieties

Leaf Type

Leafy 220 0

Semi-leafless 0 11

Standard pigmentation

Purple 119 1

White 101 10

Wing and keel pigmentation

Purple 137 1

White 83 10

Cotyledon color

Green 22 1

Yellow 175 10

Seed coat pigmentation

Present 117 0

Absent 90 11

Hilum pigmentation

Present 45 0

Absent 162 11

Cotyledon wrinkling

Absent 193 11

Present 16 0

Stipule pigmentationb

Present 94 0

Absent 64 2

Seed coat marbling

Present 34 0

Absent 175 11

Seed coat spotting

Present 42 0

Absent 164 11
aAccessions displaying trait heterogeneity were excluded from analyses for the trait.
bObserved on a subset of 160 accessions.
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TABLE 3 Phi coefficient of association for pairwise combinations of ten qualitative traits measured on a world pea germplasm collection of 220 landraces from 19 regional pools and 11 modern cultivars.
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chromosome 6, of which three mapped in the A locus region, one in

the 235.6 Mb region, and the last one upstream of the A locus region

at 27.4 Mb (Figure 3; Supplementary Table 2). Two significance peaks

emerged for seed coat pigmentation on chromosome 6, the first

containing nine SNPs located in the A locus region, and the second

including four SNPsmapping in the 235.6-235.8 Mb region (Figure 3;

Supplementary Table 2).

One significant SNP each emerged for cotyledon wrinkling and

hilum pigmentation. The former located on chromosome 3 close to

the Ra locus, which encodes a starch branching enzyme

(Bhattacharyya et al., 1990) (Figure 3; Supplementary Tables 2

and 3); the latter mapped on chromosome 1 near to the locus Pl,

which encodes a polyphenol oxidase enzyme (Balarynová et al.,
Frontiers in Plant Science 09
2022) (Figure 3; Supplementary Tables 2 and 3). No significant

association was found for seed coat spotting and marbling, and

cotyledon color (Supplementary Figure 6).

Three quantitative traits, i.e., grain yield and straw yield under

severe terminal drought, and onset of flowering, displayed a few

significant associations. Four significant SNPs mapping on

chromosomes 1, 4, 6 and 7 were found for grain yield, whereas

two significant SNPs were identified for straw yield on

chromosomes 6 and scaffolds (Figure 4; Supplementary Table 2).

Interestingly, the significant SNPs found for grain yield and straw

yield on chromosome 6 were coincident (Figure 4; Supplementary

Table 2). Four significant SNPs were identified for onset of

flowering, of which three mapped on chromosomes 4, 5 and 6,
FIGURE 2

Results of a population structure analysis with K = 9 performed on the molecular data of 11,072 SNPs for a worldwide pea germplasm collection of
220 landraces and 11 modern cultivars. Each color represents a specific number of genotype groups (K). Results are displayed for the improved
variety group and for 11 landrace regional pools that partly merge the initial 19 pools, ordered from West to East.
BA

FIGURE 1

Results of non-metric multi-dimensional scaling analyses based on (A) phenotypic data for eight qualitative and five quantitative traits and (B)
molecular data of 11,072 SNPs for a worldwide pea germplasm collection of 220 landraces from 19 regional pools and 11 modern cultivars.
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and one was located on scaffolds (Figure 4; Supplementary Table 2).

In contrast, just one significant SNP placed on chromosome 5

emerged for grain protein content (Figure 4; Supplementary

Table 2), and no significant association was detected for

individual seed weight (Supplementary Figure 6), although some

SNPs approaching significance emerged for both of these traits.
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3.5 Genomic regression models

The GP models trained and validated on the germplasm collection

displayed moderate to high predictive ability (rAb) for all traits, mostly

with slight differences between statistical models (Table 4). In

particular, the predictive ability could be considered as moderate for
FIGURE 3

Manhattan plots showing the association scores of 41,114 SNPs with seven qualitative traits along pea chromosomes for a GWAS based on a worldwide
germplasm collection of 220 landraces from 19 regional pools and 11 modern cultivars. The red lines represent Bonferroni threshold at 5% and 1%.
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a genetically complex trait such as grain yield (rAb = 0.435 for the best

model), moderately high for grain protein content, straw yield and

onset of flowering (rAb in the range of 0.55-0.62), and high for

individual seed weight (rAb = 0.764; Table 4).
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As expected, the challenging scenario of predictions for the

much narrower genetic base represented by the three RIL

populations based on the model constructed from data of the

germplasm collection, which could rely on 4,929 polymorphic
FIGURE 4

Manhattan plots showing the association scores of 41,114 SNPs with four quantitative traits along pea chromosomes for a GWAS based on a worldwide
germplasm collection of 220 landraces from 19 regional pools and 11 modern cultivars. The green line represents Bonferroni threshold at 5%.
TABLE 4 Predictive ability based on a ten-fold intra-population intra-environment cross-validation for five quantitative traits, using three genomic prediction
models and 41,114 polymorphic SNPs of a world pea germplasm collection of 220 landraces from 19 regional pools and 11 modern cultivars.

Trait Ridge regression BLUP Bayesian Lasso Bayesian C

Grain yield 0.435 0.431 0.426

Straw yield 0.578 0.576 0.575

Protein content 0.549 0.540 0.539

Onset of flowering 0.608 0.618 0.613

Individual seed 0.763 0.737 0.764
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SNPs shared by the two genetic bases, produced a substantial

decrease of predictive ability values. However, the decrease varied

depending on the traits and the RIL population. With respect to

predictions for the whole set of inbred lines, the predictive ability

reduction estimated from comparison of top-predicting models

approached 40% for individual seed weight (0.470 vs. 0.764), 50%

for protein content (0.281 vs. 0.549) and straw yield (0.313 vs.

0.578), and 60% for onset of flowering (0.261 vs. 0.618). The

predictive ability close to zero observed for grain yield (Table 4)

was probably influenced by the contrasting evaluation

environments of the two genetic bases (as reflected by much

greater yielding ability values displayed by RIL material compared

with germplasm accessions: Tables 1 and 5). High predictive ability

values were observed for specific trait-RIL population

combinations, as in the case of grain or straw yield of RIL

material originated from the European cultivar Isard and the

Australian cultivar Kaspa, which exhibited nearly no loss of

predictive ability compared with intra-population, intra-
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environment predictions (Tables 4 and 5). Predictions for the RIL

originated from the two European cultivars (Attika and Isard)

approached zero for grain yield and protein content but were

valuable for seed weight (Table 5). The extent of within-RIL

population phenotypic variation was similar for nearly all traits

(Table 5), suggesting that other factors may account for the

observed differences for within-RIL population predictive ability.
4 Discussion

Our joint investigation of phenotypic and molecular diversity

patterns and Mantel’s test results indicated the substantial

inconsistency between phenotypic and molecular diversity, in

contrast with earlier results for pea by Baranger et al. (2004) but in

agreement with several studies on other legume species (Crochemore

et al., 1998; Kolliker et al., 2001; Greene et al., 2004; Pagnotta et al.,

2011). This finding would set a limit to our ability to define core
TABLE 5 Trait range values and predictive ability based on inter-population, inter-environment validation for five quantitative traits, using three
genomic prediction models constructed from data of a world pea germplasm collection of 220 landraces from 19 regional pools and 11 modern
cultivars and validated on data of 306 modern inbred lines belonging to three connected RIL populations.

Traita Validation materialb

Range values Predictive ability

Ridge
regression

BLUP

Bayesian
Lasso

Bayesian C

Grain yield (t/ha) RILs A×I 2.79 - 6.79 −0.236 -0.237 -0.246

Grain yield (t/ha) RILs K×A 2.09 - 6.05 0.270 0.258 0.264

Grain yield (t/ha) RILs K×I 3.08 - 7.60 0.446 0.439 0.443

Grain yield (t/ha) All RILs 2.79 - 7.60 −0.025 -0.038 -0.022

Straw yield (t/ha) RILs A×I 2.23 - 7.28 0.265 0.266 0.277

Straw yield (t/ha) RILs K×A 1.91 - 7.02 0.232 0.207 0.216

Straw yield (t/ha) RILs K×I 2.52 - 9.91 0.518 0.512 0.518

Straw yield (t/ha) All RILs 1.91 - 9.91 0.313 0.295 0.302

Protein content (g/100 g) RILs A×I 21. 7 - 25.8 -0.225 -0.240 -0.190

Protein content (g/100 g) RILs K×A 22.0 - 26.6 0.028 0.024 -0.013

Protein content (g/100 g) RILs K×I 22.5 - 26.4 0.184 0.185 0.157

Protein content (g/100 g) All RILs 21.7 - 26.7 0.281 0.263 0.255

Onset of flowering (dd from Apr. 1) RILs A×I 6 - 17 0.240 0.227 0.233

Onset of flowering (dd from Apr. 1) RILs K×A 8 - 25 0.169 0.174 0.167

Onset of flowering (dd from Apr. 1) RILs K×I 6 - 23 0.201 0.264 0.247

Onset of flowering (dd from Apr. 1) All RILs 6 - 25 0.244 0.251 0.261

Individual seed weight (mg) RILs A×I 0.158 - 0.242 0.539 0.542 0.537

Individual seed weight (mg) RILs K×A 0.176 - 0.261 0.268 0.267 0.268

Individual seed weight (mg) RILs K×I 0.149 - 0.239 0.055 0.066 0.056

Individual seed weight (mg) All RILs 0.149 - 0.261 0.461 0.470 0.464
Analyses based on 4,929 polymorphic SNPs shared by the two germplasm sets.
aEvaluation in two (straw yield) or three (other traits) environments of Northern or Central Italy.
bRIL parent material identified by A for Attika, I for Isard and K for Kaspa. A and I, European origin; K, Australian origin.
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collections solely on the ground of molecular information from

random markers. The large increase in the consistency between

phenotypic and molecular diversity indicated by Mantel’s test when

the latter diversity was estimated from GWAS-selected markers

encourages the definition of molecular marker-based criteria for

variety distinctness strictly related to morphological diversity for

DUS traits, aimed to complement or possibly substitute the current

morphological trait-based criteria. Molecular marker-based criteria,

especially if they could be based on relatively large marker numbers,

may offer several potential advantages for DUS testing relative to those

based on morphological traits, such as a faster and cheaper application,

independence from testing conditions, and greater suitability for

lawsuits (Gilliland et al., 2020). The genetic diversity relative to

markers associated with agronomic and morphological traits may

also be exploited for the selection of core collections able to

maximize the genetic variation for traits that are relevant to breeders.

This approach would be definitely valuable if it was based on markers

linked to a more comprehensive set of traits than the current one,

including, for example, the tolerance to several key abiotic and

biotic stresses.

The results of NMDS and the analysis of population genetic

structure indicated a modest correspondence between molecular

diversity and geographic origin of the landraces and old cultivars.

These analyses and the DAPC highlighted the noticeable level of

genetic differentiation characterizing materials from Western Asia,

which represents the primary domestication center for pea (Zohary

and Hopf, 1973). The gradual change in predominant clusters

observed in the analysis of population genetic structure along a

West-East gradient (Figure 2), with most of the intermediate pools

featuring a considerable proportion of admixed accessions, agrees

with earlier studies by Jing et al. (2012) and Rispail et al. (2023) and

with results by Pavan et al. (2022). The latter study suggested two

major routes of pea introduction into cultivation starting fromWest

Asia, one westward along the northern and southern shores of the

Mediterranean region, and another eastward towards Central Asia.

The relatively high molecular differentiation that we observed for

traditional germplasm from Eastern Asia, especially China, and

Afghanistan, agrees with this hypothesis and with earlier findings by

Zong et al. (2009) and Smýkal et al. (2011). The moderate level of

genetic distinction that we found for germplasm from Maghreb

may derive from the edge position of this region along the westward

expansion of the crop from the Fertile Crescent. Ethiopian

germplasm, which is known to originate from a separate

domestication event (Trněný et al., 2018; Weeden, 2018) and

displayed marked genetic distinctness from other landrace

germplasm in the studies by Hellwig et al. (2022) and Rispail

et al. (2023), currently showed moderate differentiation, in

agreement with the results of an earlier study based on pooled

data from the USDA and the current collection (Pavan et al., 2022).

An additional result that emerged consistently from our NMDS

and population structure analyses was the limited genetic diversity of

the improved cultivars bred in Western Europe relative to that

displayed by landraces and old cultivars. This finding, which agrees

with results reported by Baranger et al. (2004), has considerable

importance for breeding programs, indicating the large availability of

untapped genetic variation for broadening the crop genetic diversity.
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This finding reinforces the practical interest of identifying genome-

based tools that could ease the mining of germplasm collections for

traits of primary importance for crop improvement.

The observed LD decay was much faster than that reported by

Alemu et al. (2022) for a collection of 188 vining pea varieties and

breeding lines provided by a single company (where r2 = 0.2 was

reached at 6,930,000 bp on average vs. 1,445 bp in our study), while

being slower compared to what reported by Pavan et al. (2022) for a

larger germplasm collection (where r2 = 0.2 was reached at 30 bp on

average). These results are in substantial accordance with

expectations, considering that the first genetic base was likely

much narrower, while the second one was more diversified,

relative to the current one. However, these studies adopted

different LD estimation methods compared with our study, and

this may have some bearing on the results. The fast LD decay value

featuring our data set would ensure an almost single gene resolution

(helpful for the identification of candidate genes).

Despite the somewhat sub-optimal germplasm sample size, the

GWAS was able to detect several significant associations for both

qualitative and quantitative traits, which, in addition to their possible

exploitation for breeding purposes, could help in the definition of

marker sets for the assessment of variety distinctness or core collection

set up. Significance peaks potentially associated to the A locus were

identified for the anthocyanin pigmentation of standard, keel and

wings, seed coat and stipules, in accordance with the reported role of

this gene in the regulation of the anthocyanin pathway (Hellens et al.,

2010). We identified additional significance peaks for all these traits,

except for keel and wing pigmentation. Seed coat and stipule

pigmentation shared the two peaks identified for standard

pigmentation, with the latter displaying an additional peak located

on the same chromosome (Figure 3; Supplementary Table 2). These

findings suggest that the genetic control may rely on both constitutive

and local regulation mechanisms, at least for some of the anthocyanin

pigmentation traits.

Our results for hilum pigmentation and cotyledon wrinkling

confirmed largely what reported in previous gene mapping studies.

We failed to detect any significant association for cotyledon color

and seed coat marbling. However, the most significant SNP for the

former trait, located on chromosome 2, was extremely close to

Bonferroni threshold at 5% (Figure 3) and to the cloned locus I

(Sato et al., 2007). For the latter trait, the ten SNPs featuring the

highest association score mapped on chromosome 5, in accordance

with findings by Murfet (1973) (Supplementary Figure 6).

Burstin et al. (2007) and Klein et al. (2020) identified significant

QTLs for grain protein content in the same genomic region of

chromosome 5 in which we found the only significant SNP for this

trait. For onset of flowering, significant loci were found in genomic

regions close to our significant SNPs by Gali et al. (2019) on

chromosome 4 and by Klein et al. (2014) on chromosome 5.

Several QTLs were detected for individual seed weight in various

studies performed under moisture-favorable growing conditions

(Irzykowska and Wolko, 2004; Burstin et al., 2007; Krajewski et al.,

2012; Klein et al., 2014; Gali et al., 2018; Gali et al., 2019; Klein et al.,

2020). The current lack of significant SNPs in the presence of large

phenotypic variation and high genome-enabled predictive ability

indicated a genetic control of seed weight based on many small-
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effect genes in this study.While the drought stress of our phenotyping

environment may have decreased our ability to identify QTLs by

flattening the genetic variation and reducing the effect of genes

conferring a heavier seed, the definitely quantitative genetic

architecture of this trait was confirmed by its good genomic

predictive ability even for a different genetic base grown under

moisture-favorable conditions (i.e., the three sets of RILs).

Significant loci for grain yield were detected in the same genomic

regions of our significant SNPs by Gali et al (2018; 2019) on

chromosome 1, by Irzykowska and Wolko (2004) and Burstin et al.

(2007) on chromosome 4, and by Burstin et al. (2007) on

chromosome 7. The consistency observed between our results and

those from other studies is remarkable as the latter were obtained in

much more favorable conditions in terms of water availability

compared with ours, suggesting that the reported markers may be

relevant across a wide range of environmental conditions. The

significance of the SNP found on chromosome 6 for both grain

and straw yield suggests that it may have an impact on source (i.e.,

radiation and/or water use efficiency) rather than sink (i.e., harvest

index) mechanisms under the current growing conditions.

Our study confirmed a widespread polygenic control of

quantitative traits (grain and straw yield, protein content, seed

weight, onset of flowering), emphasizing the interest to develop GP

models. The predictive ability values of GP models generated by

intra-population, intra-environment cross-validations were

comparable with those reported for pea germplasm collections. In

particular, our values of 0.43 for grain yield and 0.62 for onset of

flowering for top-predicting models are nearly identical to those

reported for these traits in the USDA pea collection by Al Bari et al.

(2021), while our value of 0.76 for individual seed weight is only

slightly lower than that reported for a broad germplasm collection

by Tayeh et al. (2015). The whole of these results, and the predictive

ability value of 0.55 reported here for a key quality trait such as

protein content, are quite encouraging for the identification of elite

genetic resources in large germplasm collections by GP models.

Our application of GP models defined from data of a world

germplasm collection to predict breeding line values was challenged

by the much narrower genetic base of the target germplasm, the

over eight-fold reduction of available SNP markers shared by the

two genetic bases (4,929 vs. 41,114), and the large differences

between evaluation environments in terms of sowing time

(autumn vs. spring) and extent of drought stress (limited vs.

severe). The lack of predictive ability of the GP model for grain

yield that we found for the whole set of lines is not surprising in this

context. It is noticeable, however, the moderately high predictive

ability value (0.446) exhibited by the GP model for grain yield of the

RILs issued by the cross of Kaspa × Isard, namely, two parents with

contrasting geographic origin and large Nei’s genetic distance

compared with that between the two European cultivars (Attika

and Isard) (Annicchiarico et al., 2019a). A similar result was

obtained for within-RIL population predictions for protein

content. These findings suggests the opportunity of a prior

assessment of the predictive ability of the generated models for

specific breeding material based on a relatively small subset of lines.

The loss of predictive ability for the whole set of breeding lines

observed for the other traits (around 40% for individual seed weight,
Frontiers in Plant Science 14
50% for protein content and straw yield, and 60% for onset of

flowering) was lower than expected, when considering the

circumstances and the fact that a comparable loss was observed for

protein content, onset of flowering and seed weight for inter-

population, inter-environment predictions relative to RIL

populations that differed for one parent genotype and were

evaluated in much more similar test environments (Annicchiarico

et al., 2019b; Crosta et al., 2022). In general, these models kept some

interest for trait prediction of modern breeding material in the

absence of more germplasm-specific GP models, while showing

greater predictive ability for specific germplasm sets (as represented

by individual RIL populations) that ought to be verified preliminarily.

In conclusion, our study generated information on genomic areas

involved in the control of several morphological and agronomic traits

that could be used for mining useful genetic resources within large

germplasm collections. Our results could also contribute to the

definition of procedures for molecular marker-based discrimination

of varieties proposed for registration and the setting up of core

collections. In addition, we generated genomic prediction models

that proved sufficiently accurate for identifying elite genetic resources

with greater yielding ability and/or specific seed traits (protein content

and seed size) and phenology, holding a possible interest also for

genomic selection in breeding programs. On the whole, our results

highlighted the usefulness of genotyping data for a cost-effective

exploitation of genetic resources.
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