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Abstract

Background: A thorough verification of the ability of genomic selection (GS) to predict estimated breeding values
for pea (Pisum sativum L.) grain yield is pending. Prediction for different environments (inter-environment
prediction) has key importance when breeding for target environments featuring high genotype × environment
interaction (GEI). The interest of GS would increase if it could display acceptable prediction accuracies in different
environments also for germplasm that was not used in model training (inter-population prediction).

Results: Some 306 genotypes belonging to three connected RIL populations derived from paired crosses between
elite cultivars were genotyped through genotyping-by-sequencing and phenotyped for grain yield, onset of
flowering, lodging susceptibility, seed weight and winter plant survival in three autumn-sown environments of
northern or central Italy. The large GEI for grain yield and its pattern (implying larger variation across years than
sites mainly due to year-to-year variability for low winter temperatures) encouraged the breeding for wide
adaptation. Wider within-population than between-population variation was observed for nearly all traits,
supporting GS application to many lines of relatively few elite RIL populations. Bayesian Lasso without structure
imputation and 1% maximum genotype missing rate (including 6058 polymorphic SNP markers) was selected for
GS modelling after assessing different GS models and data configurations. On average, inter-environment predictive
ability using intra-population predictions reached 0.30 for yield, 0.65 for onset of flowering, 0.64 for seed weight,
and 0.28 for lodging susceptibility. Using inter-population instead of intra-population predictions reduced the inter-
environment predictive ability to 0.19 for grain yield, 0.40 for onset of flowering, 0.28 for seed weight, and 0.22 for
lodging susceptibility. A comparison of GS vs phenotypic selection (PS) based on predicted genetic gains per unit
time for same selection costs suggested greater efficiency of GS for all traits under various selection scenarios. For
yield, the advantage in predicted efficiency of GS over PS was at least 80% using intra-population predictions and
20% using inter-population predictions. A genome-wide association study confirmed the highly polygenic control
of most traits.

Conclusions: Genome-enabled predictions can increase the efficiency of pea line selection for wide adaptation to
Italian environments relative to phenotypic selection.

Keywords: Breeding value, Cross-population prediction, Genotyping-by-sequencing, Genotype × environment
interaction, Pisum sativum, Predictive ability, Yield
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Background
Greater cultivation of grain legumes is a priority for Euro-
pean agriculture to increase its sustainability in terms of
soil fertility, energy efficiency, greenhouse gas emissions
and crop diversity on the one hand [1–3], and to decrease
its huge dependency from international markets for high-
protein feedstuff on the other [4]. Grain legumes were
grown over just 1.5% of the arable land in Europe in 2014
compared with 14.5% on a worldwide basis [3]. Economic-
ally insufficient yield compared to alternative crops is rec-
ognized as the main factor that limits grain legume
cultivation in Europe [5]. Plant breeding has unanimously
been indicated as the main avenue to increase grain leg-
ume yields in this region [6, 7].
Field pea (Pisum sativum L.) is the most-grown grain

legume in Europe, where it displays higher yield poten-
tial than other cool-season grain legumes in southern [8]
and western Europe [9]. High protein and energy value
for animal nutrition [8], and remarkable flexibility of
utilization (as grain, hay, or silage) [10], are further as-
sets of this crop. Pea exhibited a relatively high rate of
genetic yield gain, estimated as 1.3% per year according
to international cultivars evaluated in Italy between 1992
and 2001 [11], and about 2% per year in Canada based
on varieties released between 1993 and 2012 [12]. To se-
cure high and stable yield, however, pea breeding has to
tackle several abiotic and biotic stresses, most of which
have specific regional relevance [12]. Terminal drought
is the main stress limiting pea yield in Mediterranean-
climate regions, and escape via early phenology is a key
trait to cope with it, although an intrinsic stress toler-
ance can be present in pea germplasm [13]. Three
phenological types are recognised in pea, namely, the
European spring and winter types and the Mediterra-
nean type [14], the third type being adapted to autumn
sowing in mild-winter areas, whereas winter and spring
types differ for winter hardiness and sowing time in cen-
tral and western Europe. Tolerance to low winter tem-
peratures is a major breeding goal to increase crop
yields by shifting from spring sowing to autumn sowing
[15, 16], thereby exploiting the longer crop cycle and re-
ducing the terminal stress via earlier crop maturity.
Poor standing ability is a recognised hindrance of

pea, and greater tolerance to lodging has been pur-
sued by selecting semi-leafless varieties carrying the
afila gene (which causes the replacement of leaflets
by tendrils). Semi-leafless varieties are less prone to
lodging than leafed germplasm, but display variation
for standing ability [17, 18]. A reduction of plant stat-
ure induced by the introduction of dwarfing genes
may further increase the crop standing ability. Vari-
ation in plant height is present in semi-dwarf germ-
plasm, though, owing to different combinations of
dwarfing genes [19].

Despite the array of breeding targets to aim for, the
scarcity of resources devoted to crop improvement rela-
tive to those available for major non-legume crops re-
mains a crucial limitation for pea (and other grain
legumes), highlighting the importance of devising more
efficient selection procedures. So far, the paucity of genomic
resources and the need to cope with large genotype × envir-
onment interaction (GEI) have been major hindrances to
the application of marker-based selection in grain legumes
[20]. However, some early studies revealed useful molecular
markers linked to pea yield traits [21–23] or pea tolerance
to major abiotic or biotic stresses [24, 25]. New opportun-
ities have arisen from the recent development of powerful
pea SNP array platforms [26] and genotyping-by-
sequencing (GBS) [27, 28], whose cost per SNP data point
is lower than array platforms albeit with possibly large
amounts of missing data. Besides providing more solid
ground for the detection of useful markers [29], these de-
velopments have allowed to explore the potential value of
genomic selection (GS) as an alternative or, at least, a com-
plement to field-based phenotypic selection (PS). One pion-
eer study based on SNP array data revealed a good ability
to predict two seed yield components and flowering time in
a pea germplasm collection [30, 31]. A second study based
on GBS data revealed good GS predictive ability for pea
grain yield in a severely drought-prone environment, where
the correlation between observed and predicted phenotypes
in a cross-validation scheme exceeded 0.5 for each of three
recombinant inbred line (RIL) populations [13]. A prelimin-
ary study for Italian agricultural environments indicated an
average predictive accuracy of 0.59 for grain yield of the
same RIL populations [32]. Various factors, such as the
GS model [33] and the allowed missing rate, could affect
the GS predictive ability in these studies [13, 30].
A thorough verification of the value of GS to predict esti-

mated breeding values for pea grain yield requires to take
into account GEI effects, which may be large across
autumn-sown environments of southern Europe [34–36].
Particularly for Italy, GEI proved to be largely affected by
year-to-year variation for timing and extent of winter cold
stress, whose effect can be highly damaging in specific years
both in subcontinental-climate and Mediterranean-climate
areas [15]. This GEI pattern, which implies relatively low
genotype × location interaction compared to genotype ×
year and genotype × location × year interactions, suggested
to breed pea for wide adaptation to Italian environments, in
contrasts with results for other cool-season grain legumes
that support the selection for specific adaptation to
subcontinental-climate or to Mediterranean-climate regions
(e.g., faba bean [37] and white lupin [38]). The comparison
of inter-environment GS-based predictions (i.e., the ability
of a GS model to predict pea genotype yield responses in
independent environments/years) with inter-environment
predictions based on phenotypic data has high practical
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importance in this context, particularly when expressing its
results in terms of yield gain per unit time expected from
each selection strategy [39].
Another issue of great practical interest is the ability

of a GS model to predict yield responses in germplasm/
reference populations different from the population for
which the model was defined. Transferability of models
would obviously decrease the cost of model develop-
ment, and would impact the strategies of GS implemen-
tation in breeding programs. Inter-population (alias
cross-population) predictions in genetically unrelated
populations were nil for grain yield in a wheat study
[40], and moderate for biomass yield in a study on alfalfa
[41]. In pea, inter-population predictions for grain yield
varied largely for pairs of RIL populations that shared
one common parent [13].
The main objective of this study was to assess the pre-

dictive ability of GS for grain yield and a few key agronomic
traits of pea across organically-managed or conventionally-
managed Italian environments that differed for climatic
area and/or cropping year, taking into account inter-
environment and inter-population predictions and compar-
ing GS vs PS in terms of expected genetic gain per unit
time. GS was previously optimized by assessing different
models and data configurations. An additional objective of
this study was to investigate GEI patterns for a large set of
breeding lines, the phenotypic variation between and within
RIL populations, and their implications for pea breeding
targeted to Italian environments.

Results
Phenotypic variation, genotype × environment
interaction and trait interrelationships
In Lodi, the year 2014–15 (with conventional crop man-
agement) displayed lower mean grain yield than 2013–
14 (with organic management) (Table 1), owing to much
higher winter plant mortality (about 27% vs 1%) arising
from distinctly colder winter (with absolute minimum
temperature of − 11.6 °C vs − 5.7 °C) and to lower rainfall
(Additional file 1: Table S1). Perugia, featuring mild win-
ter and moderate rainfall (Additional file 1: Table S1),
was the lowest-yielding environment (Table 1), partly be-
cause of severe weed competition arising from the or-
ganic management.

Results for winter plant survival are reported hereafter
only for the environment displaying genetic variation for
this trait, i.e., Lodi 2014–15. The RIL population K × A
exhibited much greater winter mortality and lower grain
yield in this environment, while the three populations
did not differ widely for grain yield in the two mild-
winter environments (Table 2). The mean responses of
the RIL populations reflected well those of their parent
lines (Additional file 2: Table S2). The population A × I
showed consistently earlier onset of flowering than the
other populations (Table 2), whereas the cold-susceptible
population K ×A was latest-flowering in the cold-winter
environment because its surviving plants frequently flow-
ered by means of secondary stems after the winter-killing
of their primary stem.
Information on within-population genetic variation

expressed as genetic coefficient of variation (CVg) is re-
ported in Table 2. Variation was found for all traits in all
RIL populations except for lodging susceptibility in K ×
A, which failed to display significant variation in any en-
vironment. Therefore, this population was excluded from
the assessment of genomic predictions for this trait. The
cold-prone environment tended to widen the within-
population genetic variation for grain yield and to reduce
the variation for lodging susceptibility (Table 2). In this
environment, the population K ×A combined the greatest
cold susceptibility with the largest genetic variation for
this trait (Table 2). The three populations displayed com-
parable within-population variation for the remaining
trait-environment combinations, except for a consistent
trend towards lower variation of A × I for onset of flower-
ing (Table 2) that was expected from the similar phen-
ology of its parent lines (Additional file 2: Table S2).
Variance component estimation for grain yield of the

whole set of RILs indicated that purely genotypic effects
(SG

2) were much smaller than GEI effects (SGE
2) (Table 3).

In contrast, GEI effects were smaller than purely genotypic
effects for lodging susceptibility, and particularly small for
onset of flowering and seed weight (Table 3). Estimates of
broad-sense heritability on a genotype mean basis across en-
vironments averaged across the individual RIL populations
indicated only moderate heritability for grain yield (H2=
0.50) and susceptibility to lodging (H2= 0.55), and high her-
itability for onset of flowering and seed weight (H2= 0.91).

Table 1 Mean trait value of three pea test environments

Trait Lodi 2013–14 Lodi 2014–15 Perugia 2013–14

Grain yield (t/ha) 6.307 a 4.586 b 2.905 c

Onset of flowering (dd from Apr. 1) 12.42 b 15.36 a 12.44 b

Lodging susceptibility (score 1 =min, 5 =max) 2.50 b 3.67 a 2.18 b

Individual seed weight (g) 0.213 a 0.187 b 0.190 b

Winter plant survival (proportion) 0.991 a 0.726 b 0.995 a

Row means with different letter differ at P < 0.05
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Variance component estimation in the presence of the
RIL population factor indicated that the genotypic variation
between RIL populations was definitely smaller than the
average within-population variation, except for winter plant
survival (Table 3). The variation of population × environ-
ment interaction tended to be higher for grain yield, and
roughly comparable for the other traits, relative to the aver-
age GEI variation within populations (Table 3). For lodging
susceptibility, the variation between RIL populations across
environments and the average within-population variation
for GEI were not significant (Table 3).
Genetic correlation values for line responses were

lower across years in Lodi than across locations in the
same year for all traits (Table 4), indicating larger GEI
across years than across sites. The consistency of geno-
type responses was particularly low for grain yield across

years in Lodi (rg = 0.325), while being very high for lodg-
ing susceptibility across sites in 2013–14 (rg near unity,
non-significant GEI; Table 4).
The first GEI PC axis was the only significant one at

P < 0.05 and accounted for 87% of the GEI variation in
the AMMI analysis for grain yield. The environment or-
dination along this axis highlighted the contrast between
the cold-prone environment and the other environments
for genotype responses (Fig. 1). The AMMI-modelled
yield responses revealed marked GEI of cross-over type
(i.e., implying rank change) between top-yielding lines
across contrasting environments, along with wider line
variation in the cold-prone environment (Fig. 1). Various
RILs exhibited a clear yield advantage not only over their
parent lines but also over the control variety Spacial
(Fig. 1).

Table 2 Mean value, and genetic coefficient of variation (CVg), for trait values in three test environments of three pea RIL
populations derived from three connected crosses (A × I, 102 lines; K × A, 100 lines; K × I, 104 lines)

Mean valuec CVg (%)
d

Traita Environmentb A × I K × A K × I A × I K × A K × I

GY (t/ha) Lo14 5.994 a 6.326 a 6.541 a 10.1 ** 17.5 ** 18.2 **

GY (t/ha) Lo15 5.805 a 2.522 b 5.777 a 28.0 ** 51.3 ** 33.0 **

GY (t/ha) Pg14 2.615 b 2.773 b 3.310 a 24.8 ** 20.7 ** 14.8 **

OF (dd from Apr. 1) Lo14 10.26 c 13.84 a 13.14 b 18.5 ** 37.5 ** 33.2 **

OF (dd from Apr. 1) Lo15 12.45 c 18.72 a 14.81 b 14.2 ** 28.3 ** 27.7 **

OF (dd from Apr. 1) Pg14 10.58 b 13.43 a 13.17 a 28.3 ** 39.5 ** 41.8 **

LS (score 1 =min, 5 =max) Lo14 2.53 a 2.43 a 2.58 a 20.9 ** 9.7 NS 22.9 **

LS (score 1 =min, 5 =max) Lo15 3.66 b 3.52 ab 3.80 a 7.4 ** 0.0 NS 8.7 **

LS (score 1 =min, 5 =max) Pg14 2.37 a 2.14 a 2.02 a 16.2 ** 13.7 NS 23.0 **

SW (g) Lo14 0.207 b 0.230 a 0.201 b 9.6 ** 8.0 ** 9.3 **

SW (g) Lo15 0.190 a 0.192 a 0.180 b 8.2 ** 5.8 ** 7.9 **

SW (g) Pg14 0.183 b 0.207 a 0.181 b 9.4 ** 8.0 ** 9.9 **

WS (proportion) Lo15 0.877 a 0.436 b 0.865 a 10.8 ** 32.2 ** 12.8 **
a GY, grain yield; OF, onset of flowering; LS, lodging susceptibility; SW, individual seed weight; WS, winter plant survival
b Lo14, Lodi 2013–14; Lo15, Lodi 2014–15; Pg14, Perugia 2013–14
c Row means followed by different letter differ at P < 0.05
d NS and **: genetic variance not different from zero at P < 0.05 and different from zero at P < 0.01, respectively

Table 3 Estimated components of variance relative to genotype (SG
2) and genotype × environment interaction (SGE

2) and to RIL
population (SR

2), genotype within RIL population (SG(R)
2), RIL population × environment interaction (SRE

2) and genotype within RIL
population × environment interaction (SG(R)E

2), for traits of 306 pea lines belonging to three RIL populations tested in three
environments (Lodi 2013–14; Lodi 2014–15; Perugia 2013–14)

Analysis without RIL population factorb Analysis with RIL population factorb

Traita SG
2 SGE

2 SG
2/SGE

2 ratio SR
2 SG(R)

2 SRE
2 SG(R)E

2

GY (t/ha)2 0.567 ** 1.443 ** 0.39 0.078 ** 0.517 ** 1.122 ** 0.689 **

OF (dd from Apr. 1)2 18.88 ** 2.73 ** 6.91 3.98 ** 16.30 ** 1.18 ** 1.96 **

LS [score (1 =min, 5 = max)]2 0.113 ** 0.042 ** 2.68 0.000 NS 0.123 ** 0.015 ** 0.012 NS

SW [(g)2 × 1000] 0.333 ** 0.056 ** 5.94 0.118 ** 0.254 ** 0.043 ** 0.030 **

WS (proportion)2 – – – – – 0.063 ** 0.014 ** – – – –
a GY, grain yield; OF, onset of flowering; LS, lodging susceptibility; SW, individual seed weight; WS, winter plant survival. All traits assessed in three environments
except winter plant survival, assessed only in Lodi 2014–15
b NS and **: component of variance not different from zero at P < 0.05 and different from zero at P < 0.01, respectively
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Higher grain yield in the cold-prone environment was
strictly associated (P < 0.001) with greater winter plant sur-
vival not only for lines of the population K ×A (r = 0.78)
but also for those of the other RIL populations (r ≥ 0.70). In
the population K ×A, later onset of flowering was associ-
ated with greater winter survival (r = 0.28, P < 0.01), as well
as higher grain yield in any environment (r ≥ 0.41; P < 0.01).
Correlations for other traits assessed for each RIL in each
environment were modest and largely inconsistent.

Assessment of genomic selection models and data
configurations
Next generation sequencing produced on average 551,210
reads per sample. The dDocent pipeline produced a mock
reference genome of 74,831 contigs, with an average
length of 94.46 bases. The actual number of polymorphic
SNP markers was heavily affected by allowed missing rate,

which ranged from 6058 for missing rate of 1% to 18,057
for missing rate of 30%) (Additional file 3: Figure S1).
The value averaged across RIL populations of intra-

population, intra-environment predictive ability for grain
yield in each environment based on cross-validations is
reported in Fig. 2 for different models and data configu-
rations. In general, the three GS models performed very
similarly, and exhibited just a small increase of predict-
ive ability as a function of missing data threshold. Pre-
dictions for yield were high for the cold-prone
environment (Lodi 2014–15) (with correlation between
GS-modelled and observed data for the best model and
data configuration r = 0.707), moderately high for Lodi
2013–14 (maximum r = 0.484), and fairly modest for
Perugia 2013–14 (maximum r = 0.313). Moderately high
predictive ability was obtained as well for line mean yield
across environments (maximum r = 0.493, using Bayes-
ian Lasso with missing rate = 1%; Fig. 3).
The values averaged across RIL populations of intra-

population, intra-environment predictive ability for
mean onset of flowering, lodging susceptibility and seed
weight across three environments and winter plant sur-
vival in one environment are reported in Fig. 3 for differ-
ent GS models and data configurations. A slight
advantage of Bayesian Lasso over the other models
emerged for onset of flowering and winter plant survival.
A plateau of predictive ability was achieved between 1
and 10% missing data for all traits. Correlations between
GS-modelled and observed data for best GS models in-
dicated that onset of flowering and seed weight were
highly predictable (r > 0.70), whereas grain yield, lodging
susceptibility and winter plant survival exhibited moder-
ate predictive ability (r > 0.40).
GS model choice for following analyses was based on

Root Mean Square Difference (RMSD) values between
the predictive ability of the best trait-specific GS model
and each available combination of models and missing
data thresholds, averaging the results across RIL popula-
tions and traits (Additional file 4: Tables S3 and S3bis).
Bayesian Lasso with missing data threshold = 1% (includ-
ing 6058 polymorphic SNP markers) was top-ranking ac-
cording to this criterion, displaying in all cases just a
modest penalty in terms of r value (< 0.04) in comparison

Table 4 Significance and extent (as genetic correlation rg for genotype response across environments) of genotype × environment
interaction across pairs of test environments, for traits of 306 pea lines belonging to three RIL populations

Years 2013–14 vs 2014–15 in Lodia Lodi vs Perugia in 2013-14a

Trait P value rg P value rg

Grain yield ** 0.325 ** 0.822

Onset of flowering ** 0.889 ** 0.955

Lodging susceptibility ** 0.639 NS 0.980

Individual seed weight ** 0.879 ** 0.953
a NS and **: not significant at P < 0.05 and significant at P < 0.01, respectively; rg always different from zero (P < 0.01)

Fig. 1 Nominal grain yield of six top-performing pea inbred lines
out of 306 derived from three connected crosses, three parent
cultivars (Attika, Isard, Kaspa) and one commercial cultivar (Spacial)
as a function of the environment score on the first genotype ×
environment interaction principal component axis (PC 1)
[environments are Lodi 2013–14 (Lo14), Lodi 2014–15 (Lo15), and
Perugia 2013–14 (Pg14); the graph includes the two top-yielding
lines in each environment or across environments]
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Fig. 2 Intra-population predictive ability for pea grain yield in three environments, for all combinations of three regression models (BL, Bayesian
Lasso; rrBLUP, Ridge regression BLUP; G-BLUP, genomic BLUP) and five genotype missing data thresholds. Data averaged across three pea RIL
populations and 50 repetitions of 10-fold stratified cross-validation per individual analysis

Fig. 3 Intra-population predictive ability for pea mean grain yield, onset of flowering, lodging susceptibility and individual seed weight across
three environments and winter plant survival in one environment, for all combinations of three regression models (BL, Bayesian Lasso; rrBLUP,
Ridge regression BLUP; G-BLUP, genomic BLUP) and five genotype missing data thresholds. Data averaged across two (lodging susceptibility) or
three (other traits) RIL populations and 50 repetitions of 10-fold stratified cross-validation per individual analysis
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with the best-predicting GS model and data configuration
for the specific trait-environment combination. This
assessment indicated the following ranking of GS models
for predictive ability, albeit with small differences in
average RMSD: Bayesian Lasso > rrBLUP > G-BLUP
(Additional file 4: Table S3bis).
Model training on all RIL populations (without struc-

ture information) rather than on individual populations
allowed for greater predictive ability for all traits, with
the exception of winter plant survival (Table 5). The
addition of structure information led to nil or negligible
increase of predictive ability, with the exception of win-
ter plant survival (Table 5). GS training on all RIL popu-
lations without structure imputation was preferred for
all subsequent analyses, because of its similar predictive
ability and wider applicability to breeding material in
comparison with the model with structure information.

Assessment of inter-environment and inter-population
genomic predictions
Intra-population, inter-environment predictive ability
values averaged across the three RIL populations are re-
ported in Table 6 for all traits and environments. The
three environments did not differ largely for predictive

ability when respectively used as the only training envir-
onment. The only exception was represented by poorer
predictions for lodging susceptibility issued by Lodi
2014–15 compared with the other environments, which
was associated with distinctly narrower trait variation
(Table 2) and more widespread lodging (Table 1). Onset
of flowering and seed weight, which featured high intra-
environment predictive ability and low GEI, exhibited
high inter-environment predictive ability (average r >
0.63; Table 6). Grain yield and lodging susceptibility dis-
played relatively low average inter-environment predict-
ive ability (0.28 ≤ r ≤ 0.30, Table 6).
On average, the reduction of inter-environment pre-

dictive ability due to the use of different populations for
GS model training and model application (as assessed by
comparing inter-population, inter-environment predic-
tion in Table 7 vs intra-population, inter-environment
predictions in Table 6) was substantial for all traits. It

Table 5 Intra-population predictive ability (PA) for pea grain
yield, onset of flowering, lodging susceptibility and individual
seed weight averaged across three environments and winter
plant survival in one environment, for different Bayesian Lasso
model training and account of population structure. Values
averaged across two (lodging susceptibility) or three (other
traits) RIL populations

Trait Traininga Structureb PA

Grain yield Single No 0.452

All No 0.476

All Yes 0.474

Onset of flowering Single No 0.710

All No 0.747

All Yes 0.749

Lodging susceptibility Single No 0.385

All No 0.404

All Yes 0.411

Individual seed weight Single No 0.695

All No 0.696

All Yes 0.700

Winter plant survival Single No 0.561

All No 0.557

All Yes 0.585
a Single =model trained on the specific population; all = model trained on all
populations joined in a single data set. Fifty repetitions of 10-fold stratified
cross-validation per individual analysis
b No = no structure information; yes = structure information as RIL population
fixed factor

Table 6 Inter-environment predictive ability for four pea traits,
using Bayesian Lasso modelling trained in one environments for
prediction of independent lines in each of two other
environments. Values averaged across two (lodging
susceptibility) or three (other traits) RIL populations

Training environmentb

Traita Lodi 2013–14 Lodi 2014–15 Perugia 2013–14 Average

GY 0.311 0.240 0.336 0.296

OF 0.680 0.614 0.669 0.654

LS 0.386 0.180 0.269 0.278

SW 0.668 0.616 0.629 0.638
a GY, grain yield; OF, onset of flowering; LS, lodging susceptibility; SW,
individual seed weight
b Fifty repetitions of 10-fold stratified cross-validation per individual analysis

Table 7 Inter-population predictive ability for same (intra-
environment) or other environments (inter-environment) for five
pea traits, using Bayesian Lasso modelling trained in one RIL
population for predictions in one (lodging susceptibility) or two
(other traits) other RIL populations, averaging results across
validation RIL populations in one (winter plant survival) or three
(other traits) environments. Inter-environment predictions for
models trained in one environment and tested in each of two
other environments, averaging results across training
environments

Intra-environmentb Inter-environmentb

Traita A × I K × A K × I Average A × I K × A K × I Average

GY 0.092 0.282 0.367 0.247 0.042 0.226 0.292 0.187

OF 0.359 0.455 0.522 0.445 0.287 0.454 0.457 0.399

LS 0.296 – 0.333 0.315 0.195 – 0.250 0.223

SW 0.303 0.253 0.322 0.293 0.274 0.263 0.296 0.277

WS 0.230 0.130 0.410 0.257 – – – –
a GY, grain yield; OF, onset of flowering; LS, lodging susceptibility; SW,
individual seed weight; WS, winter plant survival
bColumn headings indicate the training population

Annicchiarico et al. BMC Genomics          (2019) 20:603 Page 7 of 18



amounted to 37% (0.187 vs 0.296) for grain yield, 39%
for onset of flowering, 56% for seed weight, and 20% for
lodging susceptibility. In general, inter-population pre-
dictions for grain yield and onset of flowering tended to
be lower when using the population derived from the
two European parent cultivars (A × I) as the training set
(Table 7). Inter-population predictions for winter plant
survival, which could only be assessed for the intra-
environment scenario, were very low for the model
trained on the population K × A that excluded the cold-
tolerant parent genotype Isard (Table 7).
The average reduction of inter-population predictive

ability passing from intra-environment to inter-
environment predictions was substantial for grain yield
(24%; 0.187 vs 0.247) and lodging susceptibility (20%),
and modest (≤ 10%) for the two traits featuring small
GEI, i.e., onset of flowering and seed weight (Table 7).

Comparison of genomic vs phenotypic selection
On average, the GS modelling of line responses for grain
yield and lodging susceptibility based on phenotyping
data in two environments exhibited somewhat higher
correlation with phenotypic data in an independent en-
vironment than the phenotypic data themselves used for
GS modelling (Table 8). Phenotypic and GS-modelled
data displayed nearly identical correlation with inde-
pendent phenotypic data in the case of flowering time
and seed weight (Table 8).
Compared with onset of flowering and seed weight,

grain yield and lodging susceptibility exhibited lower
intra-population predictive accuracy (for an independent
environment) of GS-modelled data constructed from phe-
notyping data of two environments, as well as lower
broad-sense heritability for PS based on two environments

(Table 8). As a result, the comparison of GS vs PS based
on expected gains produced fairly similar results for the
four traits (Table 8). GS was predicted to be at least 80%
more efficient than PS when the latter contemplated two
selection environments from one test year, and at least 3.6
fold more efficient when PS was based on two environ-
ments from different years (Table 8).
The average reduction of predictive accuracy arising

from inter-population instead of intra-population applica-
tion of GS predictions amounted to 33% for grain yield
(0.262 vs 0.390), 36% for onset of flowering, 13% for lodg-
ing susceptibility, and 55% for seed weight (Table 8). How-
ever, the inter-population GS scenario displayed higher
selection efficiency than one year-based PS for all traits
(although marginally for seed weight), while showing at
least two-fold greater efficiency for all traits when PS
spanned over two years (Table 8). It is noteworthy that
even in the worst scenario for GS (inter-population GS
predictions vs one-year PS), GS displayed 20% greater pre-
dicted efficiency than PS for yield selection.

Genome-wide association study
The GWAS performed on stratified data of the three
RIL populations identified, at the association score
threshold of three, 30 GBS-generated markers associated
with onset of flowering, 36 with grain yield, 32 with
lodging susceptibility, 21 with seed weight, and two with
winter survival. The association scores are graphically
summarized in Fig. 4.
Additional file 5: Table S4 reports detailed information

on marker ranking and association scores for each sig-
nificant marker-trait association, as well as results of the
linkage analysis of these markers with the Illumina array
markers used for a consensus map in [42]. The absence

Table 8 Correlation (r) of phenotypic data or genomic selection (GS)-modelled data based on two (test) environments with
phenotypic data in another (validation) environment, square root of broad-sense heritability (H) when adopting two test
environments, accuracy (rAc) of GS modelling trained in two environments for prediction in one validation environment, and GS vs
phenotypic selection (PS) efficiency ratio based on predicted genetic gains per unit time for similar evaluation costs assuming two
environments for PS and for generation of phenotyping data for intra-population (GSA) and inter-population (GSB) GS scenarios, for
four pea traits. Data averaged across three environment combinations and two (lodging susceptibility) or three (other traits) RIL
populations

r GSA/PS efficiency ratioe GSB/PS efficiency ratioe

Traita Phenotypic data GS-modelled datab Hc GSA rAc
d tP = 1 tP = 2 GSB rAc

f tP = 1 tP = 2

GY 0.377 0.402 0.632 0.390 1.801 3.602 0.262 1.209 2.418

OF 0.837 0.827 0.929 0.690 2.170 4.340 0.445 1.398 2.796

LS 0.398 0.436 0.609 0.485 2.323 4.647 0.420 2.014 4.029

SW 0.831 0.836 0.932 0.723 2.266 4.531 0.327 1.024 2.049
a GY, grain yield; OF, onset of flowering; LS, lodging susceptibility; SW, individual seed weight
b Using Bayesian Lasso modelling trained on all genotype data
c Assuming experiments with three replicates (as the current phenotyping experiments)
d Using Bayesian Lasso modelling for prediction of independent lines, using 50 repetitions of 10-fold stratified cross-validation per individual analysis
e As ratio (iG rAc / tG) / (iP H / tP), where iG and iP are standardized selection differentials for GS and PS, respectively, setting iG = 1.46 iP to approach same evaluation
costs; and tG and tP are cycle duration for GS and PS, setting tG = 0.5 and tP = 1 (two test sites in the same test year) or tP = 2 (two test years in the same site)
f Using Bayesian Lasso model training on data of one RIL population for prediction within each of two other populations
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of high marker-trait linkage in the presence of genetic
variation confirmed indirectly the highly polygenic con-
trol of grain yield, lodging susceptibility and seed weight.
The opposite trend was manifest for flowering time,
where most highly-linked SNP markers concentrated in
a genomic area of LG II, based on the high (r2 > 0.8) or
medium (r2 > 0.4) linkage of 9 markers with the arabi-
nase A encoding gene ARBA1788, 8 with the cell wall
invertase 1 gene CWi1, and 10 with the Glutathione S-
transferase gene F3586 (Additional file 5: Table S4). Out
of the 36 SNP markers highly associated with grain yield,
24 were also associated with onset of flowering, exhibit-
ing a genetic association that agreed with the moderate
phenotypic correlation between the two traits across RIL
populations (r = 0.38, P < 0.001). Out of the 32 SNP
markers highly associated with lodging susceptibility, 14
were placed in a genomic region of LG V, based on their
high linkage with the beta-1,3 glucanase encoding gene
gns2 and the ABA insensitive 3 gene Abi3. The markers
highly associated with seed weight were placed in two
genomic areas of LG VII, one at the beginning of LG
VII based on associations with the Sulfate transporter
gene St100044, and the other located around the middle
of LG VII based on associations with the Acetohydroxy
acid isomeroreductase gene Acetisom. No genes were
linked with the two markers highly associated with win-
ter survival.

Discussion
Phenotypic variation, genotype × environment
interaction and trait interrelationships
The main limitation of this study lies in the limited num-
ber of test environments it was based upon. However, the
observed GEI pattern for pea grain yield, implying modest
GEI across geographically-distant Italian locations and
high GEI across test years as a consequence of marked

year-to-year variation for low winter temperatures, con-
firmed earlier results relative to different sets of recent
varieties grown in a larger number of Italian environments
[34, 36]. Those studies and the current one indicate the
possible occurrence in northern Italy of absolute minimum
temperatures in winter below the threshold of − 8.5 °C that
was reportedly associated with sizeable plant mortality of
relatively winter-hardy pea [43]. The year-to-year variation
for this and other climatic variables is expected to increase
as consequence of climate change [44]. The reported GEI
pattern supports the breeding for wide adaptation to Italian
environments, given the limited scope for exploiting spe-
cific adaptation to distinct geographic areas [45]. The GEI
pattern has implications as well for genomic selection mod-
elling. GS models that incorporates GEI effects have been
developed [46], but their application in the current GEI sce-
nario has limited practical interest, because the exploitation
of genome-enabled predictions for a specific year (e.g., a
cold-prone one) is prevented by the impossibility to know
in advance how a future year will be like. The reported abil-
ity of single environments to predict (genomically or
phenotypically) the genotype responses in other target envi-
ronments is the information of practical interest for the
current wide-adaptation prospect.
The cold-prone environment had a greater impact on

the evaluation of line breeding values across environ-
ments than the other environments (as shown by the
amplification of line yield variation according to CVg

values in Table 2 and AMMI analysis results in Fig. 1),
supporting the adoption of multi-year PS for yield to in-
crease the probability to encounter substantial cold
stress. However, multi-year PS implies delayed variety
selection, reinforcing the potential interest of genome-
enabled models aimed to select more timely for winter
plant survival and wide adaptation. The interest of GS to
shorten the field-based evaluation would be less

Fig. 4 Top 100 genome-wide association scores, ranked in descending order, for single-nucleotide polymorphism (SNP) markers associated with five
phenotypic traits of pea. GWAS was performed on stratified data, with each of two (lodging susceptibility) or three (other traits) RIL populations acting
as a stratum
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pronounced for onset of flowering, seed weight and sus-
ceptibility to lodging, which were less affected by GEI
and more heritable than grain yield according to current
and earlier findings [34].
The current RIL populations, which derived from

crosses between elite varieties, represented well the type
of material generated by breeding programs. Indeed,
some lines displayed distinct yield progress not only over
their parent lines but also over the elite commercial
standard represented by the variety Spacial. The wider
within-population than between-population variation
observed in these elite RIL populations encourages the
perspective application of GS to lines of a reduced num-
ber of RIL populations. However, within-population vari-
ation was smaller than between-population variation
with respect to GEI effects for yield (Table 3). This result
paralleled the smaller within-population than between-
population variation for cold tolerance (Table 3), i.e., the
trait that had a major impact on line specific adaptation to
the cold-prone environment and, thereby, on GEI effects.
These latter findings suggest that multi-environment
evaluation of RIL populations as bulked progenies could
provide useful indications on the adaptation pattern of
most of their component lines.
The modest or nil correlation of winter plant survival

with onset of flowering emerged already for other
autumn-sown pea material grown in Italian environ-
ments [15]. In agreement with earlier findings [34], most
winter-type material combined cold tolerance with rela-
tively early onset of flowering, because its main cold tol-
erance mechanism is not cold stress escape by a late
phenology but the display of a rosette-like winter growth
habit that features cold-tolerant germplasm in pea and
other grain legume species [14, 15] and can contribute
to cold tolerance by its relationships with lower relative
plant water content [47]. Grain yield and onset of flow-
ering exhibited a moderate positive correlation in the
current environments, in contrast with the negative cor-
relation that emerged for the same RIL populations
grown under severe terminal drought in a phenotyping
platform [13] or under spring sowing in northern Italy
[42] (where early flowering was important to escape ter-
minal drought and heat stress in the absence of winter
cold stress).

Genomic selection
The similar performance of the tested GS models, and
the negligible or nil increase of predictive ability arising
from imputing population structure information, agreed
with earlier results for pea [13, 30]. The higher intra-
population, intra-environment predictive ability reported
for grain yield of the same RIL material under severe ter-
minal drought [13] relative to the current environments
(0.72 vs 0.48 for best predictions averaged across

populations) could be attributed to the fact that line
yield responses in that study were ecologically simpler,
owing to their close relationship with drought stress es-
cape via early onset of flowering. The higher predictive
accuracy for pea yield reported for Italian environments
in a preliminary study [32] was less realistic than the
current one, because phenotyping in two test sites of the
same year excluded the complication of genotype × year
interactions from predictions. The dDocent pipeline pro-
vided a larger number of SNP markers than the UNEAK
pipeline used in our earlier studies [13, 32].
The assessment of inter-environment predictive abil-

ities for models trained on one-environment data pro-
vided indications on the variation between environments
for ability to generate useful phenotypic information for
GS modelling. Onset of flowering and seed weight stood
forward as well-predictable traits in agreement with earl-
ier findings [30, 31], owing to low exposure to GEI and
intrinsically high predictive ability (as highlighted by
intra-population prediction of line mean responses
across environments in Fig. 3). Grain yield exhibited pre-
dictive ability values in the range of those reported for
another inbred species such as wheat [40], which, al-
though fairly low, proved of interest for GS when com-
pared with PS opportunities. For all of these traits, the
similar predictive ability displayed by the single training
environments (Table 6) was comforting, suggesting that
every environment may produce useful phenotyping data
for GS modelling. The prediction of lodging susceptibil-
ity proved more difficult, especially because of poor pre-
dictions arising from model training on Lodi 2014–15
data (Table 6). The widespread lodging occurred in this
cold-prone environment, which leveled out the pheno-
typic variation, was probably a consequence of less over-
wintering plants, since a dense canopy favors plants’
standing ability via greater intertwining of tendrils.
We envisaged the exploitation of inter-population pre-

dictions only for RIL populations that share one parent
with the RIL population used for model training - which
implies greater potential success relative to the case of
no common parent. As expected, inter-environment pre-
dictions were substantially worse than intra-population
predictions. The trend towards poorer inter-population
predictions issued by the training population A × I relative
to the other RIL populations (Table 7) was probably due
to the genetic similarity of its European parent cultivars
and their difficulty to properly account for the genetic
contribution of the more exotic and dissimilar Australian
cultivar. Indeed, Nei’s [48] distance based on the SNP
markers used for inter-population predictions was 0.09
between Attika and Isard, while being ≥ 0.14 between each
of these cultivars and Kaspa. Hence, RIL training popula-
tions derived from genetically-distant parents may prove
more useful for inter-population predictions.
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GS selection for winter plant survival could not
undergo a thorough assessment, owing to meaningful
trait observation in only one environment. The moder-
ately high intra-population, intra-environment predictive
ability displayed by GS for this trait (Fig. 3) was encour-
aging, but inter-population predictions may be inaccur-
ate according to our results (Table 7).
The slightly higher correlation with phenotypic data in

an independent environment exhibited by GS-modelled
data of grain yield or lodging susceptibility compared to
the phenotypic data they were based upon (Table 8) is
remarkable, suggesting the ability of the GS modelling
process to reduce the noise that is present in phenotyping
data. Better correlations of GS-predicted yield data than
phenotypic data emerged already for early-generation
evaluation of wheat lines across different test years [49].
GS-modelled and phenotyping data displayed similar cor-
relation with data in an independent environment for on-
set of flowering and seed weight, in agreement with earlier
results for pea [31].
The average intra-population prediction accuracy of

GS models trained in two environments was always
lower than the broad-sense heritability relative to PS
based on two selection environments (Table 8). How-
ever, the advantages provided by GBS-based GS over PS
in terms of shorter selection cycle and more evaluated
lines for same cost led to distinctly greater predicted ef-
ficiency of GS over PS for nearly any trait and selection
scenario (Table 8). When considering two years for grain
yield and one year for the other traits as the likely dur-
ation cycle for PS (as suggested by GEI results), GS com-
pared with PS would be (i) 3.6-fold more efficient for
yield and over 2-fold more efficient for the other traits,
when using intra-population predictions, and (ii) 2.4-fold
more efficient for yield and more efficient for the other
traits, when using inter-population predictions. This as-
sessment was influenced by our estimate of five-fold
higher cost of PS relative to GS [28], which coincided,
anyway, with estimates for wheat breeding based on the
same number of total plots per field-evaluated line [50].
The same wheat study estimated three- to five-fold
greater expected efficiency of GS over PS for grain yield
selection, values that are more favourable for GS than
the current ones.

Genome-wide association study
The main objective of the GWAS study was to shed
some light onto the genetic control of the target traits.
Highly polygenic traits, whose control depends on many
quantitative trait loci (QTL) featuring small genetic ef-
fects, are expected to display loose marker-trait associa-
tions, as it was the case for grain yield, lodging
susceptibility and seed weight. The improvement of such

traits is expected to be more efficient via genomic selec-
tion than via marker-assisted selection.
The GWAS confirmed at the genetic level the moder-

ate positive relationship between onset of flowering and
grain yield that was observed phenotypically. Many of
the markers associated with both traits were related to a
genomic region in LG II that was reported as a major
QTL for flowering time in earlier studies [42, 51]. The co-
location of this QTL with grain yield emerged already in
two earlier studies [13, 42] in which, however, the relation-
ship of grain yield with onset of flowering was negative ra-
ther than positive, according to the adaptive value of early
flowering in environments featuring severe terminal
drought and heat stress and lack of winter cold stress.

Conclusions
This study supports the implementation of GS as a means
to increase, for same costs, the efficiency of pea breeding for
wide adaptation to Italian environments. Along with earlier
studies for pea [13, 32], soybean [52, 53], alfalfa [41, 54] and
chick pea [55], it provides evidence for the value of GS for
legume crop yield improvement. Interestingly, GS was found
more efficient than PS even for traits that are genetically
simpler, more heritable and less subjected to GEI than grain
yield, such as seed weight and onset of flowering, because
they proved as well more predictable genomically. The wider
within-population than between-population variation ob-
served for elite RIL populations justifies the perspective ap-
plication of GS to a large number of lines belonging to a
fairly small number of RIL populations derived from elite
parent genotypes, to increase the probability to pick up the
extremely rare genotypes featuring the desired recombin-
ation of several favourable alleles for each of various traits.
Our envisaged use of GS implied the development of a spe-
cific GS model for each elite RIL population that would be-
come progressively available from crosses between new elite
parents (where elite populations could be selected out of
several populations preliminary evaluated phenotypically as
bulked material). To limit the GS model training effort, we
also envisaged the application of available GS models to new
RIL populations having one parent in common with the RIL
used for model construction. Our results showed that inter-
population predictions for this context, albeit not as well-
performing as intra-population predictions, could efficiently
contribute to grain yield selection.

Methods
Plant material
Our study included 306 genotypes belonging to three
connected RIL populations originated from paired
crosses between Attika (a European cultivar described as
a spring-type), Isard (a French winter-type cultivar) and
Kaspa (an Australian cultivar of Mediterranean type).
The three parent cultivars, each belonging to a different
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phenological type, were chosen in the crossing program
because they displayed high and stable grain yield and
only moderate phenological differences across environ-
ments of northern and southern Italy [34, 56]. The RIL
populations are coded henceforth as A × I, K × A and
K × I from the initials of their respective parents. The
population A × I included 102 lines; the population K ×
A, 100 lines; and the population K × I, 104 lines. Four F6
plants per line were grown in a non-heated glasshouse
to collect DNA samples for line genotyping and to pro-
duce seed, which underwent one additional generation
of multiplication before use for phenotyping. In addition,
the evaluation work included the three parent cultivars,
as well as the cultivar Spacial that displayed excellent
adaptation across organically-managed environments of
northern and central Italy in recent variety trials [36].

Phenotyping
The 306 genotypes were evaluated under rain-fed condi-
tions in three autumn-sown environments of northern
or central Italy, named hereafter as Lodi 2013–14, Lodi
2014–15 and Perugia 2013–14 after their site name and
cropping year (referred as ‘year’ hereafter). The site of
Lodi (45°19′N, 9°30′E), representative of the subcontin-
ental climate typical of northern Italy, included two envi-
ronments, to sample the wide year-to-year climatic
variation for extent of winter low temperatures of this
area (Additional file 1: Table S1). Lodi’s environments
represented the two major crop managements for pea in
Italy, namely, organic (2013–14) and conventional crop-
ping (2014–15). The environment of Perugia (43°06′N,
12°23′E), which was characterized by a cool Mediterra-
nean climate that is widespread in central Italy and in-
land southern Italy (Additional file 1: Table S1), was
organically-managed, to ensure that possible GEI effects
across the two sites could be attributed to the different
climatic region with no bias arising from different crop
management or cropping year.
Each experiment was laid out in a randomized

complete block design with three replications. The three
parent lines and Spacial were replicated thrice within
each block. Each plot had 0.96 m2 size and included four
rows 1.2 m long, 0.2 m apart. Fifteen seeds per row
(overall seed density = 62.5 seeds/m2) were sown at 3 cm
depth by a pneumatic seed drill. Pre-sowing mineral
fertilization (24 kg/ha N, 72 kg/ha P2O5, and 72 kg/ha
K2O), and chemical weed control [Stomp® 330 E (a.i.
Pendimethalin at 307 g/L) at 4.5 L/ha], were applied only
in the conventionally-managed environment (Lodi
2014–15). Seedbed preparation with ploughing and har-
rowing was the same in conventional and organic condi-
tions. Sowing took place on November 7 for Lodi 2013–
14, October 22 for Lodi 2014–15, and November 25 for
Perugia 2013–14. No mechanical weed control was

applied under organic management. The crop was al-
ways harvested by combine within the first ten days of
June.
The following traits were recorded on a plot basis: (i)

winter plant survival, based on plant counts at the onset
and at the end of winter; (ii) lodging susceptibility, visu-
ally assessed at maturity on a 5-level scale ranging from
1 = lodging limited to the basal part of the stem to 5 =
complete lodging; (iii) onset of flowering, as the number
of days after April 1 when 50% of plants in the plot had
at least one fully open flower; (iv) dry grain yield, after
combine-harvesting the plot and assessing seed moisture
on a random sample of 250 seeds oven-dried at 90 °C for
four days; (v) individual dry seed weight, assessed on the
seed sample used for seed moisture determination.

Statistical analysis of phenotypic data
The following analyses were performed for each trait in
each environment. An analysis of variance (ANOVA)
assessed the variation among genotypes within each RIL
population. Components of variance relative to variation
among genotypes (SG

2) and experimental error (Se
2)

were estimated for each RIL population by a restricted
maximum likelihood (REML) method, expressing the
within-population genetic variation in terms of genetic
coefficient of variation [CVg = (SG/m) × 100, where m =
trait mean value]. Components of variance estimated for
the pooled genotypes of the three populations were used
to compute best linear unbiased prediction (BLUP) values
for each trait according to DeLacy et al. [57], which were
used as phenotyping data for subsequent GS analyses. The
following ANOVA including the fixed factor RIL popula-
tion and the random factors genotype within RIL popula-
tion and block aimed to compare the RIL populations for
trait mean values in each environment:

Ykir ¼ mþ Rk þ Gi Rkð Þ þ Br þ ekir

where Ykir is the observed response of the genotype i be-
longing to the RIL population k in the block r; m is the
grand mean; Rk, Gi and Br are RIL population, genotype
and block main effects, respectively; and ekir is the ran-
dom error.
Other analyses were carried out for line values of the

RIL populations across environments. Components of
variance were estimated by two separate analyses for the
following sources of variation held as random factors,
using a REML method: (i) pooled genotypes of the RIL
populations (SG

2), GEI (SGE
2), and experimental error

(Se
2); (ii) RIL population (SR

2), genotype within RIL
population (SG(R)

2), RIL population × environment inter-
action (SRE

2), genotype within RIL population × environ-
ment interaction (SG(R)E

2), and experimental error (Se
2).

The aim of the latter analysis was to estimate the relative
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extent of variation between and within populations.
ANOVAs including the same factors (along with envir-
onment and block) were used to test the difference from
zero of the variance components. For example, the
ANOVA model for the latter analysis was:

Ykijr ¼ mþ Rk þ Gi Rkð Þ þ E j þ Br E j
� �þ Rk E j

þ Gi Rkð Þ E j þ ekijr

where Ykijr is the observed response of the genotype i be-
longing to the RIL population k in the block r of the envir-
onment j; m, Rk, Gi and Br correspond to prior notations;
Rk Ej and Gi (Rk) Ej are RIL population × environment and
genotype within RIL population × environment inter-
action effects, respectively; and ekijr is the random error.
Further ANOVAs including the random factors geno-

type and block and the fixed factor environment aimed
to assess the occurrence of GEI for the pooled genotypes
across subsets of environments represented by (i) years
(2013–14 and 2014–15) in the same location (Lodi), and
(ii) locations (Lodi and Perugia) in the same year (2013–
14). The consistency of genotype responses across these
pairs of environments was assessed in terms of genetic
correlation rg as [58]:

rg ¼ r= H1 H2ð Þ
where r is the phenotypic correlation for genotype value
across the relevant pair of environments, and H1 and H2

are the square root of the broad-sense heritability on a
genotype mean basis (H2) for the two environments.
Each H2 value was computed from variance components
for genotype (SG

2) and experimental error (Se
2) of the

specific environment estimated by a REML method, and
the number of experiment replications n, as:

H2 ¼ SG
2= SG

2 þ Se
2=n

� �
:

For each trait and RIL population, we estimated the
broad-sense heritability on a genotype mean basis across
the three environments from components of variance
relative to genotype (SG

2), GEI (SGE
2) and experimental

error (Se
2) as:

H2 ¼ SG
2= SG

2 þ SGE
2=eþ Se

2=e n
� �

where e is the number of environments.
Grain yield data from all genotypes, including the four

reference cultivars, underwent a combined ANOVA in
which the GEI variation was partitioned by Additive
Main effects and Multiplicative Interaction (AMMI) ana-
lysis [59]. This analysis, which has special value for re-
vealing GEI patterns [60], aimed to highlight the extent
of GEI among top-yielding lines and the performance of
these lines relative to their parent genotypes and the
elite commercial cultivar Spacial, as well as providing

additional information on the similarity of test environ-
ments for GEI effects. AMMI analysis describes the re-
sponse Yij of the genotype i in the environment j
(omitting the block factor) according to the following
model [59]:

Y ij ¼ mþ Gi þ Lj þ
X

uin√ln
� �

vjn√ln
� �þ dij

where m, Gi and Lj correspond to earlier notations,
whereas GLij interaction effects are partitioned into (i)
the pattern component, in which uin and vjn are eigen-
vectors (scaled as unit vectors, i.e. ∑ ui

2 = ∑ vj
2 = 1) of

the genotype i and the location j, respectively, and ln is
the singular value, for the principal component (PC) axis
n, and (ii) the noise component dij, indicating the devi-
ation from the model. Data from each reference cultivar
were averaged across the three replicates within each
block prior to data analysis. The number of GEI princi-
pal component (PC) axes included in the AMMI model
was defined as recommended in [61], namely, by testing
for statistical significance the dij term by the FR test [61]
starting from the model with n = 0, and adding one PC
axis whenever dij was statistically (P < 0.05) different
from zero. AMMI-modelled yield responses were graph-
ically displayed as a function of the environment PC 1
score as nominal yields, which sum up the estimated
entry mean value and the modelled GEI effect on PC 1
while excluding the site main effect, irrelevant for entry
ranking [60]. For sake of clarity, the graphs included just
a subset of top-performing genotypes, namely, the two
top-yielding RILs in each environment or across envi-
ronments, and the four reference cultivars.
Interrelationships between traits were investigated by

Pearson’s correlation analysis. All analyses of phenotypic
data were carried out using SAS/STAT® software [62].

DNA isolation, GBS library construction, and sequencing
DNA was extracted from green tissue that was collected
from bulked stipules of four F6 plants per line using a
CTAB method [63], checking its quality on 1% agarose
gel. We adopted the GBS protocol by Elshire et al. [27]
with modifications. After quantification by a Quant-iT™
PicoGreen® dsDNA assay kit (Life Technologies, P7589),
each DNA sample (100 ng) was digested with ApeKI
(NEB, R0643L) and then ligated to a unique barcoded
adapter plus a common adapter. Equal volume of the
ligated product was pooled and cleaned up with QIA-
quick PCR purification kit (QIAGEN, 28104) for subse-
quent amplification. In PCR, 50 ng template DNA was
mixed with two primers and KAPA Library Amplifica-
tion Readymix (KAPA Biosystems KK2611). Amplifica-
tion was carried out on a thermocycler for 10 cycles with
10 s of denaturation at 98 °C, followed by 30 s of anneal-
ing at 65 °C and 30 s extension at 72 °C. Each library was
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sequenced in two lanes on Illumina HiSeq 2000 at the
Genomic Sequencing and Analysis Facility of the Univer-
sity of Texas, Austin, TX.

Genotype SNP calling and data filtering
GBS raw reads (100 bp, single end) were demultiplexed
and trimmed for restriction enzyme remnants. The three
parental lines (Attika, Isard and Kaspa) plus the two
lines with highest number of reads were used to assem-
ble a mock reference genome using the dDocent pipeline
[64], which internally leverages the Rainbow tool [65].
For this step, we selected the similarity parameter c =
0.9. We used dDocent also for the successive steps of
reads alignment and SNP calling, which internally use
bwa [66] and freebayes [67], respectively. All parameters
were kept at default values. The final genotype matrix, in
the form of a vcf file, was further filtered for quality
using the VCFtools software [68] with parameters
--minQ 30 --max-non-ref-af 1 --non-ref-af 0.001. The
resulting data set was filtered for increasing levels of
allowed missing values, excluding markers whose miss-
ing rate over genotypes was greater than a fixed thresh-
old of 1, 5, 10, 20, and 30%. Markers that were
monomorphic or with minor allele frequency < 5% were
removed. Following Nazzicari et al. [69], we estimated
missing data by Random Forest imputation [70] using
the R package MissForest [71] with the configuration
ntree = 100, maxiter = 10, encoding genotypes as cat-
egorical data (factors).

Genomic regression models and data configurations
We considered two GS models that stood out for predict-
ive ability in a previous comparison of models for pea
grain yield [13], namely, Ridge regression BLUP (rrBLUP)
and Bayesian Lasso (BL). The rrBLUP model assumes a
linear mixed additive model where each marker is
assigned an effect as a solution of the equation [72]:

Y ¼ μþ G uþ ε

where Y is the vector of observed phenotypes, μ is the
mean of Y, G is the genotype matrix (e.g., {0,1,2}), u ~ N
(0, Iσu

2) is the vector of marker effects, and ε ~ N (0,
Iσe

2) is the vector of residuals. Solving with the standard
ridge-regression method, the solution is:

û ¼ G0ðGG0 þ λ IÞ−1 ðY−μÞ

where λ = σe
2 / σu

2 is the ridge parameter, representing
the ratio between residual and markers variance. Given
the vector of effects, it is possible to predict phenotypes
and estimate genetic breeding values. The rrBLUP model
assumes that the effects of all loci have a common vari-
ance, making it more suitable for traits influenced by a large

number of minor genes. In contrast, Bayesian models as-
sume relatively few markers with large effects, allowing dif-
ferent markers to have different effects and variances [73].
These models assign prior densities to markers effects,
thereby inducing different types of shrinkage. The solution
is obtained by sampling from the resulting posterior dens-
ity. We selected the BL model as described in [74]. Details
on the implementation of rrBLUP and BL models were the
same as those reported in [13].
We also considered a third GS model, namely, Gen-

omic BLUP (G-BLUP) [75], which stood out in another
comparison of GS models for pea traits [30]. This model
was described as mathematically equivalent to rrBLUP
under certain conditions [76], but exploits genomic rela-
tionships between individuals to estimate breeding
values, has reduced dimensions, and does not require
thousands of iterations for its construction [73]. We esti-
mated the genomic covariance matrix via a kinship
matrix as described in [77].
We assessed the model predictive ability as Pearson’s

correlation between observed and predicted phenotypes
in a 10-fold stratified cross-validation scheme (where
training and validation held 90 and 10% of data, respect-
ively) for each regression model (rrBLUP, BL, G-BLUP)
and possible genotype missing data threshold (1, 5, 10,
20, 30%). Here and in following analyses, predictive abil-
ities were assessed separately for each RIL population
and then averaged across populations (to avoid bias as-
sociated with different population mean value). Each
cross-validation test was repeated 50 times, averaging
the results to ensure numerical stability. Regression
models, cross-validation and predictive ability estima-
tions were all implemented using the R package GROAN
[78]. We selected for subsequent analyses the model and
data configuration that maximized the average predictive
ability across all traits.
Population structure, which may improve the predictive

ability of GS models [79], was taken into account by adding
in the model a RIL population fixed factor as a 3 × n inci-
dence matrix, where n is the number of samples. For the se-
lected GS model and data configuration, we compared the
predictive ability based on cross-validations obtained with
and without imputed structure information. In addition, we
verified the predictive ability of GS models trained on the
single RIL populations (which implied less data for model
construction). Results from these preliminary investigations
supported the selection of Bayesian Lasso without structure
information with 1% missing data threshold.

Inter-environment and inter-population predictive abilities
We assessed the intra-population, inter-environment
predictive ability of GS models, i.e., the model predictive
ability for other environments than that of model con-
struction using the same RIL populations for model
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training and selection. By turns, the selected GS model
built in one (test) environment was used to predict in
each of the other two (validation) environments the
phenotypic values of independent lines selected by a 10-
fold stratified cross-validation scheme with 50 repeti-
tions, averaging the results across RIL populations.
Other GS model assessments regarded the inter-

population predictive ability, i.e., the ability of one model
constructed from phenotyping data of one RIL popula-
tion to predict data of the other RIL populations. This
was envisaged for predictions relative to data of the
same environment used for model construction (inter-
population, intra-environment prediction) and for pre-
dictions relative to each of the other two independent
environments (inter-population, inter-environment pre-
diction). We used by turns each environment and RIL
population for model training (using all data from the
relevant RIL population), averaging the results across the
single training environments.

Comparison of genomic vs phenotypic selection
The phenotypic correlation of the phenotypic data in
one (validation) environment with either the phenotypic
data averaged across the other two (test) environments
or the GS-based breeding values obtained from the same
data, averaging the results across all possible environ-
ment combinations and RIL populations, provided a pre-
liminary assessment of phenotypic vs genome-enabled
predictions. This comparison aimed to assess the pos-
sible loss (or gain) of predictive ability derived from GS
modelling of phenotypic data relative to that of pheno-
typic data themselves.
Further analyses were carried out to compare GS vs

PS in terms of selection efficiency for future selection
activities, taking into account their possible differences
for length of selection cycle and selection costs. For GS,
we hypothesized two environments to be used for model
building, i.e., the model training on line mean values
across two environments (rather than one, as in the earl-
ier assessment of inter-population predictions), as rea-
sonable in the presence of sizeable GEI, and left one
environment for model validation. Also here, the three
environments acted by turns as test or validation. GS
gains were assessed for two scenarios. The former sce-
nario implied model training and predictions for the
same RIL population (intra-population, inter-
environment predictions), estimating the predictive abil-
ity (rAb) using 90% of the RIL data for model construc-
tion and 10% for validation, with a cross-validation
procedure repeated 50 times. The latter scenario con-
templated the GS model training based on all data of one
RIL population for prediction of the other two RIL popu-
lations (inter-population, inter-environment predictions).
In both cases, the rAb values averaged across RIL

populations and all possible sets of training environments
were used to estimate GS model accuracy (rAc) values ac-
cording to [33] as: rAc = rAb / H, where H is the square root
of the broad-sense heritability on a genotype mean basis
in the validation environment estimated as described earl-
ier. The mean value of rAc across RIL populations and val-
idation cycles was inputed in the following formula for
estimation of the expected genetic gain per selection cycle
from GS [39]:

ΔGG ¼ iG rAc sA

where iG = standardized selection differential for GS, and
sA = standard deviation of breeding values. We com-
puted the expected genetic gain per year as:

ΔGG ’ ¼ iG rAc sAð Þ=tG
where tG = duration in years of one GS cycle, which was
set to 0.5 under the hypothesis of two possible selection
cycles per year for GS (one off-season and one ordinary).
The expected genetic gain per year from PS is [80]:

ΔGP ’ ¼ iP H sAð Þ=tP
where iP = standardized selection differential for PS, tP =
duration in years of one PS cycle, and H = square root of
the broad-sense heritability on a genotype mean basis
across the experiments hypothesized for selection. We
hypothesized two selection experiments, each with three
replications, accommodated either at two sites in the
same year (implying tP = 1) or in two years at the same
site (implying tP = 2). For each RIL population, we esti-
mated the broad-sense heritability on a genotype mean
basis across each of the three possible pairs of environ-
ments from the relevant SG

2, SGE
2 and Se

2 components
of variance as described earlier. The mean H value aver-
aged across the three RIL populations and the three
pairs of environments was used for predicting gains
from PS.
From the formulae above, a comparison of GS vs PS in

terms of predicted genetic gain per year for same overall
costs equates to comparing (iG rAc / tG) vs (iP H / tP),
considering the impact on iG and iP values of different
evaluation cost per genotype of GS and PS. For the hy-
pothesized selection scenarios, we estimated a cost of €
200 for both PS scenarios (given the same number of se-
lection environments), and € 40 for GS [28]. For a fixed
budget available, this implied five-fold more evaluated
genotypes and, hence, five-fold lower selected fraction
for GS relative to PS. For large genotype numbers, the
ratio of iG to iP is 1.379 (2.421/1.755) when considering
selected fractions of 2% for GS and 10% for PS, and
1.539 (2.154/1.400) when considering selected fractions
of 4% for GS and 20% for PS [80]. We adopted the inter-
mediate ratio value within this range, setting iG = 1.46 iP.
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Therefore, the relative efficiency of GS vs PS in terms of
predicted genetic gain per year for same budget coin-
cided with the ratio of (1.46 rAc / tG) to (H / tP), setting
tG = 0.5 and envisaging the values 1 or 2 for tP.

Genome-wide association study
A genome-wide association study (GWAS) was carried
out for each trait of the three RIL populations using the
egscore function in the R package GenABEL [81]. The
main aim of this study was to provide preliminary infor-
mation on the trait genetic control by exploring the
number of independent genomic areas that displayed
linkage with the target traits. Data were considered
stratified, with each population acting as a stratum.
Therefore, the association scores were computed within
each stratum and then combined. Principal components
analysis was adopted to take population structure into
account according to [82], correcting for inflation (Pc1df
in GenABEL nomenclature). The resulting scores were
further verified for inflation rate using Benjamini and
Yekutieli’s False Discovery Rate criterion [83]. A marker
ranking per trait was obtained, setting an association
score threshold of three (corresponding to P < 0.001 sig-
nificance of the association). Linkage disequilibrium
(LD) was measured between the significantly associated
markers and those used for a consensus map reported in
[42], where trait-marker associations were studied on a
germplasm set that included 180 lines in common with
the current study. The squared correlation coefficient
(r2) was used as a measure of LD, considering as highly
linked the markers showing r2 > 0.8).
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