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Abstract
Terminal drought is the main stress that limits pea (Pisum sativum 
L.) grain yield in Mediterranean-climate regions. This study 
provides an unprecedented assessment of the predictive ability 
of genomic selection (GS) for grain yield under severe terminal 
drought using genotyping-by-sequencing (GBS) data. Additional 
aims were to assess the GS predictive ability for different GBS 
data quality filters and GS models, comparing intrapopulation 
with interpopulation GS predictive ability and to perform 
genome-wide association (GWAS) studies. The yield and onset 
of flowering of 315 lines from three recombinant inbred line 
(RIL) populations issued by connected crosses between three 
elite cultivars were assessed under a field rainout shelter. We 
defined an adjusted yield, which is associated with intrinsic 
drought tolerance, as the yield deviation from the value expected 
as a function of onset of flowering (which correlated negatively 
with grain yield). Total polymorphic markers ranged from 
approximately 100 (minimum of eight reads per locus, maximum 
10% genotype missing data) to over 7500 markers (minimum of 
four reads, maximum 50% missing rate). Best predictions were 
provided by Bayesian Lasso (BL) or ridge regression best linear 
unbiased prediction (rrBLUP), rather than support vector regression 
(SVR) models, with at least 400–500 markers. Intrapopulation 
GS predictive ability exceeded 0.5 for yield and onset of 
flowering in all populations and approached 0.4 for the adjusted 
yield of a population with high trait variation. Genomic selection 
was preferable to phenotypic selection in terms of predicted 
yield gains. Interpopulation GS predictive ability varied largely 
depending on the pair of populations. GWAS revealed extensive 
colocalization of markers associated with high yield and early 
flowering and suggested that they are concentrated in a few 
genomic regions.

L egume crops are expected to assume a pivotal role in 
future farming systems—to increase their sustainabil-

ity in terms of soil fertility, energy efficiency, greenhouse 
gas emissions, and crop diversity, while satisfying the 
increasing demands for high-protein feed and nutritious 
food (Jensen and Hauggard-Nielsen, 2003; Schneider and 
Huyghe, 2015). Field pea (Pisum sativum L.) is the most-
grown grain legume in Europe, where it displays higher 
yield potential than other cool-season grain legumes 
in western (Carrouée et al., 2003) and southern Europe 
(Annicchiarico, 2008). High protein and energy value for 
animal nutrition and remarkable flexibility of utilization 
(as grain, hay, or silage) are further assets of this crop 
(Carrouée et al., 2003).
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Core Ideas

•	 GBS-based genomic predictions of pea grain yield 
and phenology are accurate and cost-efficient.

•	 Genomic areas related to high yield and early 
flowering colocate under severe terminal drought.

•	 Cross-population genomic predictions have quite 
variable predictive ability.
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Drought is the main environmental factor limiting 
agricultural production worldwide. The Mediterranean 
climate is characterized by wet, mild winters and dry, 
hot summers. Drought that occurs during spring tends 
to coincide with the critical phases of grain setting and 
filling, thereby seriously affecting the crop yield. The 
ability of crops to yield satisfactorily in these conditions 
may be achieved through different mechanisms that pro-
vide either drought escape or drought tolerance (Fang 
and Xiong, 2015). Escape via an early phenology is very 
important in severely drought-prone Mediterranean-
climate environments (Turner et al., 2001). These envi-
ronments are expected to become common throughout 
southern Europe and northern Africa and to expand 
northward and eastward into central Europe as a conse-
quence of climate change (Alessandri et al., 2014). Crop 
genetic improvement is a main means to adapt to climate 
change and mitigate its effects (Ceccarelli et al., 2010). 
Breeding for harsh Mediterranean environments implies 
selection under severe drought (Ceccarelli, 1989). Man-
aged selection environments can be an important asset 
for coping with the year-to-year rainfall variation that is 
typical of rainfed Mediterranean environments, by repro-
ducing faithfully the genotype adaptive responses that 
are observed under ordinary stress in the target region 
(Annicchiarico and Piano, 2005; Bänziger et al., 2006).

Genomic selection enables breeders to predict 
complex, polygenic traits by means of a statistical 
model constructed from genome-wide marker informa-
tion (Meuwissen et al., 2001). Genomic selection has 
shown potential for increasing the accuracy of tradi-
tional marker-assisted selection in terms of gain per 
selection cycle and per unit cost (Heffner et al., 2010). 
Earlier applications of GS to pea on the basis of single-
nucleotide polymorphism (SNP) array data displayed 
high accuracy for prediction of flowering time and two 
grain-yield component traits (Burstin et al., 2015; Tayeh 
et al., 2015b). Genotyping-by-sequencing (Elshire et al., 
2011) is a recent method to derive genome-wide marker 
genotypes from sequence data at a lower cost than many 
SNP array platforms, albeit with large amounts of miss-
ing data. Various factors, such as the chosen genomic 
selection model (Lorenz et al., 2011) and the method of 
missing data imputation (Nazzicari et al., 2016), deserve 
specific investigation, because they may influence the GS 
predictive ability (e.g., Annicchiarico et al., 2015; Burstin 
et al., 2015).

An issue of great practical interest is the ability of GS 
models to predict traits in germplasm/reference popula-
tions that differ from the population in which the models 
were defined. Transferability of models would obviously 
decrease the cost of model development and impact the 
strategies of GS implementation in breeding programs. 
For crop yield, interpopulation predictions were report-
edly poor in wheat (Charmet et al., 2014) and moderate 
in alfalfa (Annicchiarico et al., 2015). Moderately high 
interpopulation prediction ability was reported in pea for 
onset of flowering and seed weight (Tayeh et al., 2015b).

The main objective of our study was to assess the 
ability of GS based on GBS data to predict pea grain yield 
under severe terminal drought. Grain yield was assessed 
in one growing season under managed drought stress con-
ditions. In addition to analyzing the actual yield results, 
we also analyzed data corrected to remove the positive 
effect of early flowering, to minimize the impact of a 
stress escape strategy. The newly obtained adjusted grain 
yield allowed for investigating yield responses associated 
with stress tolerance mechanisms. Phenotypic data were 
obtained from 315 inbred lines derived from three con-
nected crosses between elite parent genotypes of European 
or Australian origin that displayed excellent adaptation to 
south European environments in prior, extensive variety 
testing. Additional aims of our study were (i) providing 
information on the extent of polymorphic SNP markers 
obtainable by GBS for pea inbred line populations; (ii) 
investigating the effect on GS predicting ability of differ-
ent GBS data quality filters and GS models; (iii) assessing 
the decrease of predictive ability of GS models trained 
on lines from one cross when applied for predicting lines 
from another cross that share one common parent. Finally, 
we also used GBS-generated markers for GWAS studies 
for grain yield and phenology traits to get a better under-
standing of the genetic control underlying these traits.

MATERIALS AND METHODS

Plant Material
Our study included 105 genotypes for each of three con-
nected RIL populations originated from paired crosses 
between ‘Attika’ (a European cultivar described as a spring-
type), ‘Isard’ (a French winter-type cultivar), and ‘Kaspa’ 
(an Australian cultivar). These cultivars displayed fairly 
similar phenology and cycle duration along with high and 
stable grain yield and other positive agronomic character-
istics across environments of northern and southern Italy 
(Annicchiarico, 2005; Annicchiarico and Iannucci, 2008). 
The RIL populations are coded hereafter as A×I, K×A, and 
K×I from the initials of their respective parents. Four F6 
plants per line were previously grown in an unheated glass-
house to collect DNA samples for line genotyping and to 
produce seed, which underwent one additional generation 
of multiplication before being used for phenotyping.

Phenotyping
The 315 lines were evaluated for onset of flowering and 
grain yield under severe terminal drought under a field 
rainout shelter equipped with a double-rail irrigation 
boom at the Research Centre for Fodder Crops and Dairy 
Productions, Lodi, Italy. Sowing took place in late winter 
(25 Feb. 2015) to avoid any confounding effect of genetic 
variation for tolerance to low winter temperatures. The 
RILs were sown in plots that were 0.160 m2 (0.8 m × 0.2 
m) and included two rows of eight plants each, with 0.1 
m spacing between rows and between plants (result-
ing in an agronomic seed rate of 100 seeds m−2). The 
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experimental design was an a lattice with four replica-
tions: each replication included 21 incomplete blocks of 
15 plots. By enabling better control of the experimental 
error, the lattice design provided better-quality phe-
notypic data for BLUP computation and subsequent 
analyses. The soil was sandy-loam (FAO classification; 
53% sand, 35% clay, and 12% silt), with a field capacity 
of 17.2% at 15 cm and 13.9% at 30 cm depth. Plot harvest 
spanned from 26 May to 3 June 2015. A total of 120 mm 
irrigation was provided throughout the crop cycle at 
progressively lower amounts (60 mm in March, 35 mm 
in April, 25 mm in May). This irrigation scheme, which 
mimicked the Mediterranean-climate rainfall pattern 
observed in the driest areas of southern Italy (Del Monte 
et al., 1995), provided a severe terminal drought for the 
crop, when considering the late sowing and the fact that 
the potential evapotranspiration from March to May 
amounted to 239 mm. Field pea is a cool-season species 
whose optimal mean air temperatures for growth and 
production range between 12 and 18°C. In this study, 
daily mean temperatures averaged 14.4°C in April 2015 
and 19.3°C in May 2015. A slight heat stress may have 
occurred during May, when daily maximum tempera-
tures averaged 24.9°C. Temperatures recorded under the 
rainout shelter were approximately 1°C higher than in 
the surrounding fields. We recorded onset of flowering 
as the number of days after 1 April when 50% of plants 
in the plot had at least one fully open flower. At maturity, 
all the plants from each plot were harvested and hand-
threshed, dry grain yield was recorded in g per plot after 
oven-drying the seeds at 90°C for 4 d and then convert-
ing the yield to tons per hectare.

Statistical Analysis of Phenotypic Data
After adjusting line means according to the a lattice 
design, we assessed each RIL population individually to 
determine whether genotypic grain yield was affected 
by onset of flowering; we used a regression analysis per-
formed on mean yield values of each line. We verified 
the significance of linear and curvilinear responses and 
used analysis of covariance to assess the occurrence of 
variation among regression slopes of the three RIL popu-
lations. In the presence of a significant inverse linear 
response, for each population we estimated for each line 
an “adjusted” grain yield on a plot basis as the deviation 
of its actual yield from the yield value expected for the 
line as a function of its onset of flowering in the linear 
regression model for the population. Thus, adjusted grain 
yields (which had negative or positive values according 
to the deviation direction and averaged zero across plot 
values of all lines within each RIL population) enabled 
comparison of the RILs for grain yield after removing 
the mean effect of drought escape as determined by dif-
ferences in phenology, thereby focusing on grain yield as 
affected essentially by drought tolerance mechanisms.

An analysis of variance (ANOVA) assessed the varia-
tion among genotypes within each RIL population for 
grain yield, onset of flowering, and adjusted grain yield. 

Components of variance relative to variation among 
lines (s2

l) and experimental error (s2
e) were estimated for 

each RIL population by a restricted maximum likelihood 
method and used to compute broad sense heritability 
(H2) values on a line mean basis as H2 = s2

l /(s
2

l + s2
e/r), 

where r (number of replicates) = 4. Another ANOVA 
including the fixed factor RIL population and the ran-
dom factor line within population aimed to compare the 
populations for grain yield and onset of flowering using 
the average within-population variation as the error 
term. We used best linear unbiased prediction (BLUP) 
values computed according to DeLacy et al. (1996) for 
GS and GWAS analyses. All the statistical analyses were 
performed using Statistical Analysis System (SAS) or 
CropStat software programs.

DNA Isolation, GBS Library Construction,  
and Sequencing
Green tissue was collected from bulked stipules of four 
F6 plants per line, flash frozen in liquid nitrogen, stored 
at −80°C, and then ground for genomic DNA isolation. 
DNA was extracted using 400 mg of tissue using a CTAB 
method described by Rogers and Bendich (1985) and then 
checked on 1% agarose gel to assess yield and quality.

The DNA was quantified with a Quant-iT PicoGreen 
dsDNA assay kit (Life Technologies). We used the proto-
col by Elshire et al. (2011) with modifications. Each DNA 
sample (100 ng) was digested with ApeKI (NEB) and 
then ligated to a unique barcoded adapter plus a common 
adapter. Equal volumes of the ligated product were pooled 
and cleaned up with QIAquick PCR Purification Kit (QIA-
GEN) for subsequent amplification. In the polymerase 
chain reaction, 50 ng template DNA was mixed with two 
primers and KAPA Library Amplification Readymix 
(KAPA Biosystems). Amplification was performed on a 
thermocycler for 10 cycles with 10 sec of denaturation at 
98°C followed by 30 sec of annealing at 65°C and a 30-sec 
extension at 72°C. Each library was sequenced in two lanes 
on Illumina HiSeq 2000 at the Genomic Sequencing and 
Analysis Facility at the University of Texas at Austin.

Genotype SNP Calling and Data Filtering
We used the UNEAK pipeline (Lu et al., 2013) for SNP 
discovery and genotype calling. The raw reads (100 bp, 
single-end read) obtained from sequencing were first qual-
ity-filtered and de-multiplexed. All reads beginning with 
the expected barcodes and cut-site remnant were trimmed 
to 64 bp. Identical reads were grouped into one tag. Tags 
with 10 or more reads across all individuals were retained 
for pairwise alignment, which aimed to find tag pairs that 
differed by 1 bp. For each SNP marker, the read distribu-
tion of the paired tags in each individual was used for SNP 
genotype calling. A further quality filter, implemented 
through ad hoc Python scripts, removed markers with 
fewer than four, six, or eight aligned reads. The resulting 
three data sets were filtered for increasing levels of allowed 
missing values, excluding markers whose missing rate over 
genotypes was greater than a fixed threshold of 10, 20, 30, 
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40, and 50%. Markers that were monomorphic or had a 
minor allele frequency below 2.5% were removed. Follow-
ing Nazzicari et al. (2016), we estimated missing data using 
the K-nearest neighbors imputation algorithm (K = 4) cou-
pled with the simple matching coefficient distance func-
tion (Schwender, 2007), as implemented in the R package 
Scrime (Schwender and Fritsch, 2013).

Genomic Regression Models
Four regression models were evaluated for genomic pre-
dictions: rrBLUP, BL, and two SVR models.

Ridge regression BLUP assumes a linear mixed addi-
tive model in which each marker is assigned an effect as a 
solution of the equation

=m+ +y G u e ,

where y is the vector of observed phenotypes, m is the 
mean of y, G is the genotype matrix (e.g., {0,1,2} for bial-
lelic SNPs), 2(0 ), uN su I  is the vector of marker effects, 
and 2(0 ),N esIe   is the vector of residuals. Solving with 
the standard ridge-regression method, the solution is

1( ) ( )ˆ -¢ ¢= +l -mu G GG yI ,

where 2 2/ uel =s s  is the ridge parameter, representing the 
ratio between residual and markers variance (Searle et 
al., 2009). Given the vector of effects, it is then possible to 
predict phenotypes and estimate genetic breeding values. 
Ridge regression BLUP analysis was performed through 
the R software package rrBLUP (Endelman, 2011), esti-
mating l in a restricted maximum likelihood scheme 
implemented by a spectral decomposition algorithm 
(Kang et al., 2008) and solving the resulting linear model.

Bayesian-based models assign prior densities to 
markers effects, thereby inducing different types of 
shrinkage. The solution is obtained by sampling from 
the resulting posterior density through a Gibbs sampling 
approach (Geman and Geman, 1984; Casella and George, 
1992). We selected the BL (Park and Casella, 2008) as 
implemented by the R software package BGLR (De los 
Campos and Perez Rodriguez, 2014).

Support vector regression models are based on the 
computation of a linear regression function in a high-
dimensional feature space where input data are mapped via 
a kernel function (Schölkopf and Smola, 2002). We con-
sidered two major kernel functions: linear (SVR-lin) and 
radial base (SVR-rbf). We used the e-insensitive regression 
present in the Weka framework (Hall et al., 2009).

Methodological Evaluation
Different minimum read thresholds per locus may be 
considered for self-pollinated crop material. While a four-
read threshold might be suitable for perfectly inbred lines, 
higher thresholds could be considered for material with 
some expected level of heterozygosity (as the current one, 
in which genotyping concerned the pooled DNA from 

various F6 plants). We considered all possible combina-
tions of three minimum numbers of reads per locus (four, 
six, or eight), five genotype missing data thresholds (10, 
20, 30, 40, and 50%), and four regression models (rrBLUP, 
BL, SVR-lin, SVR-rbf). For each of these 60 combinations, 
we evaluated the predictive ability as Pearson’s correla-
tion between true and predicted phenotypes in a 10-fold 
stratified cross-validation scheme (where training and 
validation hold 90 and 10% of data, respectively). Each 
cross-validation experiment was repeated 100 times, aver-
aging the results to ensure numerical stability.

Unaccounted population structure may affect the pre-
dictive ability of GS models (Guo et al., 2014). For rrBLUP 
and BL models, population structure can be taken into 
account by adding a RIL population fixed factor, as a 3 × n 
matrix (n = number of samples) of zeros and ones (coupling 
each sample to one of the three populations). We compared 
cross-validation-based predictive abilities in the absence 
and the presence of imputed structure information.

Intrapopulation versus Interpopulation  
Predictive Ability
The best-performing combination of minimum reads per 
locus, threshold for genotype missing data, and regression 
model in the methodological study was selected for compar-
ing the predictive ability of GS models within versus across 
RIL populations. For within-population predictions, both 
training and test sets came from the same cross (A×I, K×A, 
or K×I). We adopted a 10-fold stratified cross-validation 
approach to avoid overfitting. Also, a second evaluation 
was performed in which the model was trained on the joint 
data set containing the three populations. Cross-validations 
were repeated 100 times. This procedure resulted in six 
assessments for each trait (one per cross, with training done 
on single or all crosses). For interpopulation predictions, 
all data from a single RIL population were used to train a 
model that was then tested on the two other populations. 
The predictions were not repeated, since all available data 
were used for training (hence, with no variability in data 
selection). This procedure resulted in six assessments for 
each trait (three models, each tested on two populations).

Prediction accuracy (i.e., the correlation between 
genome-based predicted values and true breeding val-
ues) is more meaningful than predictive ability (i.e., the 
correlation between genome-based predicted values and 
observed values) for assessing GS gains. However, the 
ordinary estimation of prediction accuracy as the ratio 
of predictive ability to the square root of the broad-sense 
heritability on a line mean basis (Heffner et al., 2011) 
may introduce a bias when cross-validations are applied 
to data of the same experiment (Lorenz et al., 2011), as in 
the current case. Therefore, we preferred to use predic-
tive ability in place of prediction accuracy for comparing 
GS with phenotypic selection in terms of predicted yield 
gains. This choice implied a prudent assessment of the 
relative value of GS, since predictive ability has a lower 
value than prediction accuracy (the two terms being 
coincident only when heritability reaches unity).
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Genome-Wide Association Studies
A GWAS study was performed for each trait (onset 
of flowering, grain yield, and adjusted grain yield) on 
pooled data of the three RIL populations. We preferred 
GWAS to QTL mapping analysis (which is also possible 
for biparental populations) because of the opportunity 
that it offered to use the entire set of lines in a single 
study, thereby maximizing the statistical power of the 
assessment. GWAS analyses were performed using the 
egscore function in the R package GenABEL (Aulchenko 
et al., 2007). The egscore function is based on a linear 
mixed model and handles population structure and 
relatedness in the data by adjusting for principal com-
ponents of the genomic kinship matrix, as described by 
Price et al. (2006). After inspecting the eigenvalues of the 
kinship matrix (obtained from the GenABEL function 
ibs using weights based on allelic frequency), we opted to 
correct for the first two principal components. A further 
genomic control correction of the obtained P values was 
performed using the inflation factor (l). In addition, we 
performed GWAS studies on each individual RIL popu-
lation (for a total of three traits ´ three population stud-
ies) to verify the consistency of its results with those of 
the pooled analysis (albeit on the basis of reduced linkage 
detection power relative to the pooled analysis).

No reference genome is available yet for Pisum sati-
vum. Its closest relative having a mature reference genome 
is Medicago truncatula L. We used the Bowtie 2 tool 
(Langmead and Salzberg, 2012) to query the consensus 
sequence of each tag pair containing a SNP against the M. 
truncatula reference genome version 4.1 using the -very-
sensitivelocal preset, assessing the proportion of aligned 
markers. We set an association score threshold of 2 (i.e., 
P < 0.01 for significance of the association), sorted sig-
nificant markers by their association value produced by 
GWAS (thus creating one ranking per trait), and investi-
gated the markers associated with more than one trait.

Ferrari et al.’s (2016) pea trait-marker study 
included a consensus map derived from 206 SNP mark-
ers obtained by an Illumina array platform. Some 130 
polymorphic loci distributed across the seven pea chro-
mosomes covered approximately 1094 cM overall. These 
markers were observed on 270 lines (90 per RIL popula-
tion), of which 180 (60 per population) were common to 
this study. We measured the linkage disequilibrium (LD) 
between our significantly associated markers and those 
used for the consensus map. We selected the squared 
correlation coefficient (r2) as a measure of LD, classify-
ing the results into highly linked (r2 > 0.8), moderately 
linked (0.4 < r2 £ 0.8), and low/no linked markers (r2 £ 
0.4). Concurrently, we assessed the LD between GBS-
generated markers that showed no linkage with Illumina 
array-generated markers. Computation was performed 
with the R package genetics (Warnes et al., 2013).

RESULTS

Phenology and Yield under Drought Stress
The occurrence of severe terminal stress in the phenotyp-
ing experiment was confirmed by the mean grain yield, 
which averaged only 0.317 t ha−1, the yield of the top-per-
forming line being 0.708 t ha−1, and the presence in each 
population of lines that approached yield failure (Table 
1). The variation among lines for grain yield and onset 
of flowering was significant (P < 0.01) within each RIL 
population. On average, A×I exhibited an approximately 
2-d earlier onset of flowering than the other populations, 
along with a narrower range of variation for this trait 
(? 14 d) relative to K×A (? 21 d) and K×I (? 25 d) (Table 
1). The population K×I displayed a wider range of line 
values also for grain yield (Table 1). Populations did not 
differ for mean grain yield (Table 1).

Regression analysis indicated a significant (P < 
0.001) inverse linear response of grain yield as a function 
of onset of flowering, as well as no curvilinear response 
(P > 0.05), within every RIL population (Fig. 1). The esti-
mated regression slopes of the three populations were 
fairly similar (Fig. 1) and differed just at P < 0.10 in the 
covariance analysis. However, r2 values indicate that the 
dependency of grain yield from phenology was very high 
in the populations K×A and K×I (r2 > 0.70) and mod-
erately high in the population A×I (r2 = 0.41), which is 
characterized by earlier and less variable phenology.

Adjusted grain yield values (computed as deviations 
from the yield value expected according to phenology) 
displayed significant variation at P < 0.01 for A×I and K×I 
and at P < 0.05 for K×A. P values and range values (Table 1) 
indicated, altogether, that A×I featured larger variation for 
this trait than the other populations. Broad-sense heritabil-
ity averaged across the three populations was very high for 
grain yield (H2 = 0.90) and onset of flowering (H2 = 0.92) 
and moderately high for the adjusted grain yield (H2 = 0.57).

Table 1. Mean and range values for grain yield, onset of 
flowering, and adjusted grain yield for three pea recom-
binant-inbred-line populations including 105 lines each.

Population†
Onset of  
flowering Grain yield

Adjusted grain 
yield‡

d from 1 April  ——————— t ha-1 ——————— 
Mean

A × I 33.3 b§ 0.339 a —
K × A 35.0 a 0.321 a —
K × I 35.9 a 0.293 a —

Range
A × I 26.6–39.2 ** 0.097–0.658 ** −0.210–0.260 **
K × A 29.5–48.0 ** 0.030–0.599 ** −0.261–0.210 *
K × I 27.4–50.0 ** 0.028–0.708 ** −0.184–0.247 **

*Variation among lines significant at P < 0.05.

**Variation among lines significant at P < 0.01.

† Populations coded according their parent cultivars Attika (A), Isard (I), and Kaspa (K).

‡ As yield deviation from the yield value expected according to onset of flowering; see Fig. 1.

§ Means followed by different letters differ at P < 0.05 according to Newman and Keuls test.
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GBS Data, SNP Data Filtering, and  
Model Selection
Sequencing produced an average of 551,210 reads per 
sample. The UNEAK pipeline produced a gross total of 
95,740 SNP markers. Increasingly relaxed requirements 
on the minimum number of reads per locus and allowed 

missing rate resulted in progressively more polymor-
phic markers available for regression models (Fig. 2), 
with total marker value varying from approximately 100 
(minimum eight reads per locus, maximum 10% missing 
rate) to 7,521 markers (minimum four reads per locus, 
maximum 50% missing rate).

Averaged across all crosses, high predictive ability 
was generally obtained when imposing a threshold of 
four reads per locus (with limited variation across miss-
ing data thresholds), six reads per locus with missing 
data thresholds of 20% or more, and eight reads with 
missing data thresholds of 40 or 50% (Fig. 3). The SVR-
lin regression model displayed lower predictive ability 
than the other GS models, whereas BL and rrBLUP were 
top-performing in nearly all cases (with a slight, neg-
ligible advantage of the former). Results for the single 
RIL populations agreed well with results averaged across 
populations (data not reported). Following this study, we 
selected six reads per locus, the 20% genotype missing 
data threshold, and the BL model as the GS configura-
tion for successive analyses. These parameters provided 
617 polymorphic SNP markers overall, with values for 
individual RIL populations that ranged from 479 (A×I) 
to 514 (K×I) (Table 2).

Predictive Ability of Genomic Regression
Training the GS model on data of all of the RIL popula-
tions (in the absence of structure information), compared 
with training on individual populations, produced a mod-
est gain in predictive ability for onset of flowering and 
grain yield, and a distinct predictive gain (19%) for the 
adjusted grain yield, which was characterized by lower 
predictive ability (Table 3). Including population structure 
information in the model trained on all populations pro-
vided inconsistent results, namely, a slight advantage for 
phenology and grain yield but a sizable decrease of predic-
tive ability for the adjusted grain yield (−5%) (Table 3).

Figure 1. Linear regression of grain yield as a function of onset of 
flowering for three pea recombinant-inbred-line populations that 
include 105 lines each.

Figure 2. Number of polymorphic markers available in three pea 
recombinant-inbred-line populations for combinations of three 
minimum numbers of reads per locus (four, green lines; six, red 
lines; eight, blue lines) by five genotype missing data thresholds 
(10, 20, 30, 40, and 50%). Solid lines, total number of markers; 
dashed lines, average number of markers in each population.
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On average, the intrapopulation predictive ability of 
the best-performing GS models was very high (around 
0.7) for onset of flowering and grain yield and low for 
the adjusted yield (Table 3). However, the predictive abil-
ity varied between RIL populations in a fashion related 
to their within-population variation for the target trait. 
The population K×I, characterized by wider variation 

Table 2. Number of polymorphic single-nucleotide-poly-
morphism markers available in three pea recombinant-
inbred-line populations for the selected genomic selec-
tion configuration of minimum six reads per locus and 
maximum 20% genotype missing data per marker.

Subset Number

Markers in at least one population 617
Markers in A × I 479
Markers in K × A 497
Markers in K × I 514
Markers in A × I and K × A 362
Markers in A × I and K × I 378
Markers in K × A and K × I 412
Markers in A × I, K × A and K × I 279

Figure 3. Predictive ability for all combinations of four genomic selection models (line type) by three minimum numbers of reads per 
locus (four, six, and eight) by five genotype missing-data thresholds (10, 20, 30, 40, and 50%) for onset of flowering, grain yield, and 
adjusted grain yield (as yield deviation from the yield value expected according to onset of flowering), averaged across three pea 
recombinant-inbred-line populations. Results for each combination and population are averages of 100 ten-fold stratified cross-valida-
tion repetitions. BL, Bayesian Lasso; rrBLUP, ridge regression best linear unbiased prediction; SVR-rbf, support vector regression, radial 
base function; SVR-lin, support vector regression, linear.

Table 3. Predictive ability of intrapopulation genomic 
selection with different Bayesian Lasso model training 
and account of population structure for onset of flow-
ering, grain yield, and adjusted grain yield of three 
pea recombinant-inbred-line populations.† 

Trait Training‡ Structure§ A × I K × A K × I

Average
predictive

ability

O nset of 
flowering

Single No 0.537 0.755 0.802 0.698
All No 0.492 0.790 0.823 0.702
All Yes 0.489 0.796 0.830 0.705

Grain yield Single No 0.538 0.694 0.834 0.689
All No 0.540 0.744 0.836 0.707
All Yes 0.563 0.766 0.843 0.724

A djusted grain 
yield¶

Single No 0.391 0.079 0.218 0.229
All No 0.398 0.179 0.242 0.273
All Yes 0.396 0.158 0.221 0.259

† Data averaged across 100 repetitions of ten-fold stratified cross-validation.

‡ Single, model trained on the specific population; all, model trained on all populations joined in a 
single data set.

§ No, no structure information; yes, structure information as population fixed factor.

¶ As yield deviation from the yield value expected according to onset of flowering.
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for onset of flowering and grain yield (Table 1) (as well 
as by a somewhat higher number of polymorphic mark-
ers: Table 2), exhibited top values of predictive ability for 
these variables, whereas the population A×I displayed 
the opposite pattern (Table 3). However A×I, which dis-
played the widest genetic variation for adjusted grain 
yield (Table 1), was the only population that achieved 
moderate predictive ability for this trait (around 0.4: 
Table 3).

Interpopulation predictive abilities are reported in 
Table 4. Imputing structure information was irrelevant 
here, since training was always performed using data 
from a single population. K×A and K×I, which were the 
population pair with highest number of common poly-
morphic markers (Table 2) and featured large variation 
for onset of flowering and grain yield, provided good 
models for each other for these traits. Their average inter-
population predictive ability for each other was 0.728 
for onset of flowering and 0.686 for grain yield (Table 
4). Compared with an average intrapopulation predic-
tive ability of 0.779 for onset of flowering and 0.764 for 
grain yield for the same populations (Table 3), this result 
implied an approximately 7% prediction loss for onset 
of flowering and a 10% loss for grain yield when substi-
tuting interpopulation prediction for intrapopulation 
prediction. The populations A×I and K×I displayed mod-
erate values of interpopulation predictive ability for each 
other, as they displayed approximately 50% loss for onset 
of flowering and grain yield and 24% loss for the adjusted 
grain yield when substituting interpopulation prediction 
for intrapopulation prediction (based on data in Tables 
3 and 4). A×I and K×A displayed mostly no predicting 
ability for each other (Table 4).

Genome-Wide Association Studies
The GWAS performed on pooled data of the three RIL 
populations identified 26 GBS-generated markers asso-
ciated with onset of flowering and grain yield and 21 

markers associated with the adjusted grain yield, as sum-
marized in Table 5. Association scores are graphically 
summarized in Figure 4, whereas detailed information 
on marker ranking and association score, sequence, and 
useful polymorphisms for each significant marker-trait 
association is reported in Supplemental Table S1. Twenty-
five markers were associated with both onset of flowering 
and grain yield, confirming the strong genetic associa-
tion between these traits under severe terminal drought. 
Several of these markers exhibited moderately high asso-
ciation score values, whereas marker-trait associations 
for the adjusted grain yield tended to be weaker.

The GWAS performed on the individual RIL popula-
tions confirmed to a large extent the findings obtained 
for the pooled populations (Table 5). Inconsistencies 
were mainly due to markers with a low but significant 
association score in the pooled GWAS, which failed to 
achieve significance in GWAS for individual popula-
tions (Supplemental Table S1), as expected from smaller 
detection power in the latter analyses. For example, of 
the 26 markers significantly associated with grain yield 
in the pooled GWAS, the 16 that featured higher asso-
ciation scores were also significant in K×I and/or K×A, 
whereas no remaining marker achieved significance in 
the A×I population (where, however, a few other mark-
ers emerged as significant, albeit with a low association 
score) (Supplemental Table S1). Likewise, association 
scores were lower in individual populations than in the 
pooled set of RIL material (Supplemental Table S1).

Only approximately 15% of the GBS-generated 
markers aligned to the M. truncatula genome, reinforc-
ing the scope for exploring the linkage of these markers 
with Illumina array markers in Ferrari et al.’s (2016) con-
sensus map to gain some clue about the possible position 
on pea linkage groups of these markers. Linkage analysis 
results are reported in Supplemental Table S1 for each 
marker. Inspection of highly (r2 > 0.8) and moderately 
linked markers (0.4 < r2 £ 0.8) in the pooled set of RIL 
populations suggests that (i) 23 GBS markers that associ-
ated with both onset of flowering and grain yield, and 
1 marker associated with the former trait (but close to 
significant association with grain yield), are in linkage 
with Illumina array markers of a genomic region in link-
age group (LG) II, where an important QTL colocated for 
onset of flowering and grain yield in Ferrari et al. (2016); 

Table 4. Predictive ability of interpopulation genomic 
selection for onset of flowering, grain yield, and ad-
justed grain yield of three pea recombinant-inbred-line 
populations. 

Trait Training† A×I K×A K×I

Average
predictive

ability

O nset of 
flowering

A × I — -0.194 0.396 0.101
K × A −0.182 — 0.694 0.256
K × I 0.316 0.761 — 0.538

Grain yield A × I — −0.065 0.410 0.173
K × A −0.059 — 0.705 0.323
K × I 0.279 0.667 — 0.473

A djusted grain 
yield‡

A × I — 0.186 0.211 0.198
K × A 0.278 — 0.044 0.161
K × I 0.250 0.033 — 0.141

† Training column reports the population used for Bayesian Lasso model training.

‡ As yield deviation from the yield value expected according to onset of flowering.

Table 5. Number of significant markers (association 
score ³ 2) in genome-wide association studies for 
three traits in pooled data of three pea recombinant-
inbred-line populations and in each individual popula-
tion. Common markers between pooled and individual 
populations are reported in parentheses.

Material Onset of flowering Grain yield Adjusted grain yield
All populations 26 26 21
A × I 1 (0) 4 (0) 18 (8)
K × A 19 (17) 15 (15) 14 (5)
K × I 22 (21) 15 (15) 8 (0)
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(ii) the remaining 2 GBS markers associated with onset 
of flowering, and two other markers associated with 
grain yield, were not linked to any Illumina array marker 
but displayed high or moderate linkage with each other, 
suggesting colocalization with at least another QTL 
for onset of flowering and grain yield in an unknown 
genomic area; (iii) 1 GBS marker associated with grain 
yield stood on its own (no association with Illumina 
array or other relevant GBS markers); (iv) 15 GBS mark-
ers that associated with the adjusted grain yield displayed 
linkages with Illumina array markers, which, depending 
on the pattern and extent of linkage values, suggested 
the presence of at least one QTL on LG III, two QTLs 
on LG V (in genomic regions distant ? 50 cM), and two 
QTLs on LG VII (in genomic regions distant ? 35–40 
cM); (v) 6 GBS markers that associated with the adjusted 
grain yield pointed to three QTLs in separate, unknown 
genomic regions (given the extent and pattern of linkage 
between each other, and the lack of linkages with Illu-
mina array markers).

Kaspa was the main donor of alleles associated 
with late flowering and lower grain yield. Out of the 26 
markers significant for onset of flowering in the joint-
populations study, Kaspa was the parent donor for all 
26, and Isard for 5. All parent cultivars provided some 
useful SNPs associated with higher adjusted grain yield 
(Supplemental Table S1).

DISCUSSION
We achieved high GS predictive ability (r > 0.5) for grain 
yield in the three RIL populations. Contributing reasons 
for this result include (i) accurate yield phenotyping and 
experimental design (as indicated by the high broad-
sense heritability obtained for this trait relative to various 
field studies, e.g., Singh and Singh, 2006; Annicchiarico 
and Iannucci, 2008; and Georgieva et al., 2016); (ii) the 
high correlation of grain yield with onset of flowering 
in two populations, since the relatively simple genetic 
control of the latter trait could simplify genomic predic-
tions for the former trait; (iii) the modest genetic varia-
tion and limited number of relevant QTLs, and the slow 
LD decay, that are expected for a biparental population 
relative to a germplasm collection. The selection of elite 
parent lines, in which many positive alleles may already 
be fixed, probably contributed to further decrease the 
diversity for useful alleles in the RIL populations. Our 
focus on RIL populations issued by elite parent lines was 
motivated by the crucial importance of this material in 
breeding of self-pollinated crops such as pea. However, 
Tayeh et al. (2015b) reported high GS prediction accuracy 
for two grain yield components—individual seed weight 
and number of seeds per plant—in a genetically broad 
germplasm collection of pea that included recent and 
old cultivars, landraces, and wild genotypes. They used a 
high number of Infinium Array markers but showed that 

Figure 4. Genome-wide association results for markers associated with onset of flowering, grain yield and adjusted grain yield (as yield 
deviation from the yield value expected according to onset of flowering) in pooled data of three pea recombinant-inbred-line popula-
tions. SNP, single-nucleotide polymorphism.
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relatively high prediction accuracy could be maintained 
when using a subset of 369 well-distributed markers. In 
an earlier study performed on that germplasm set using 
331 markers, the best-performing GS models exhibited 
high prediction accuracy for individual seed weight 
and moderate accuracy for number of seeds per plant 
(Burstin et al., 2015). Overall, these studies and the cur-
rent one indicate that GS prediction of pea grain yield 
can be a feasible objective.

Our study confirmed the importance of early flower-
ing as a key stress escape mechanism for adaptation to 
environments with severe terminal drought. Its impact on 
line variation for grain yield was overwhelming for two 
populations that featured a later mean value and greater 
variation in the phenology trait: K×I and K×A. In this 
situation, the genotype adaptive responses for grain yield 
were ecologically and genetically simple, as confirmed 
by the extensive colocalization of SNP markers for grain 
yield and onset of flowering in the GWAS study. Indirect 
selection for grain yield based on early onset of flowering 
could provide an alternative option to GS-based selection 
for yield in this case. However, GS offers the advantages of 
somewhat greater speed and lower cost relative to the phe-
notyping assessment, as well as the potential for selecting 
also for other traits (including intrinsic drought tolerance, 
notwithstanding its modest impact on genotype grain 
yield in these two populations).

For the population A×I, which was somewhat earlier 
and less variable for onset of flowering than the other 
populations, our study also detected sizable variation for 
the adjusted yield, that is, yield unrelated to stress escape 
mechanisms. The possibility to select genomically for this 
trait is important, owing to the greater practical interest 
of intrinsic drought tolerance relative to drought-stress 
escape and the difficulty to select phenotypically for this 
trait. In many Mediterranean areas (e.g., southern Italy), 
the exploitation of early flowering is limited by greater sus-
ceptibility of early material to frost events, whose effect on 
de-hardened or insufficiently hardened plants may cause 
high plant mortality (Annicchiarico and Iannucci, 2007). 
Our current adoption of late-winter sowing purposely 
aimed to avoid the confounding effects of drought and 
cold stress and to concentrate only on the former. Inciden-
tally, late-winter sowing exacerbated the effect of drought 
stress relative to autumn sowing, as shown by lower crop 
grain yields relative to those observed in autumn-sown 
crops under comparable spring rainfall amounts (Annic-
chiarico and Iannucci, 2008). The current GS model for 
predicting grain yield under severe terminal drought, and 
a GS model for predicting grain yield in autumn-sown, 
cold-prone environments that we are developing in north-
ern Italy, could be applied jointly for selection by assigning 
relatively greater weight to predictions of the model whose 
target stress has relatively greater expected severity and 
frequency in the target region.

Bayesian Lasso and rrBLUP displayed higher predic-
tive ability, whereas SVR-lin tended toward lower pre-
dictive ability, among the four tested GS models. Earlier 

studies on different species suggest that results of model 
comparisons vary depending on the data set. For exam-
ple, the BL model outperformed rrBLUP in simulation 
studies by Ogutu et al. (2012), but it was outperformed by 
a model analogous to rrBLUP (GBLUP) in two studies on 
pea (Burstin et al., 2015; Tayeh et al., 2015b). SVR mod-
els, especially SVR-rbf, tended to outperform BL in Long 
et al.’s (2011) study and confirmed this result in an alfalfa 
study (Annicchiarico et al., 2015), whereas it tended to 
the opposite pattern here. However, we found modest 
differences in accuracy between better-predicting models 
(BL, rrBLUP, and SVR-rbf), which is in agreement with 
most previous studies.

Requiring a higher number of reads per locus implies 
a statistically lower number of heterozygotes erroneously 
called as homozygotes. Our results indicated, however, a 
lower impact on GS model predictive ability of this kind 
of error relative to the low number of polymorphic mark-
ers that are available when requiring high read depths. 
The differences in predictive ability between different 
thresholds for the number of reads per locus emerged 
only when applying relatively stringent thresholds for 
genotype missing data, which resulted in few markers for 
the higher minimum number of reads (particularly for 
the eight-read threshold). In general, approximately 400–
500 polymorphic markers proved sufficient for achieving 
good GS predictions, probably because of the slow LD 
decay and the relatively narrow genetic variation that 
characterize biparental populations. These characteristics 
would also facilitate the correct estimation of genotype 
missing data based on polymorphism from nearby mark-
ers, thereby accounting for the high predictive ability dis-
played by GS models with as many as 50% missing data. 
Nevertheless, we preferred the six-read threshold to the 
four-read one for final GS analyses because of its greater 
expected reliability for genotyped material that is still 
characterized by some degree of heterozygosity.

The value of including population structure infor-
mation in GS models may vary depending on the spe-
cific combination of populations and the target trait 
(Zhong et al., 2009; Janss et al., 2012; Guo et al., 2014). 
In this study, including structure information was not 
useful, possibly because of the narrow genetic base of 
our material. However, Burstin et al. (2015) found no 
increase in GS predictive ability when including struc-
ture information in the wider diversity panel repre-
sented by a pea germplasm collection.

A simple comparison of phenotypic selection with GS 
in terms of yield gain per cycle (considering same selec-
tion intensity) can be performed by comparing the square 
root of the estimated broad-sense heritability (which is 
proportional to phenotypic selection gain) to the esti-
mated GS prediction accuracy as indicated by predictive 
ability values (which is proportional to GS gain) (Heffner 
et al., 2010). For grain yield in the current phenotyping 
platform, H2 is 0.90, thus allowing a comparison of H = 
0.95 with the prediction accuracy of 0.72 (for best GS con-
figuration, results averaged across populations: Table 3). 



annicchiarico et al.: genomic selection for pea grain yield under terminal drought 11 of 13

An advantage for GS would arise in terms of yield gains 
per unit time when envisaging two selection cycles per 
year for GS and one for phenotypic selection, which would 
double the value of the GS-based prediction accuracy. A 
slight GS advantage would appear also for the adjusted 
grain yield of the population A×I that displayed sizable 
variation for this trait, by comparing H = 0.75 with the 
prediction accuracy of 0.40 and then doubling the latter 
figure to account for double number of selection cycles 
per unit time. Such a comparison holds true even when 
considering that our estimates of GS prediction accuracy 
might be overestimated by the use of cross-validations on 
data of the same environment rather than different envi-
ronments, because the broad-sense heritability estimate 
suffers from the same limitation, that is, its probable over-
estimation due to lack of account for genotype × environ-
ment interaction in its formula (whose extent would be 
estimated from experiments repeated in different environ-
ments). A comparison of phenotypic selection with GS for 
grain yield that takes account of their different selection 
costs could be performed according to the closest scenario 
among those reported in Rajsic et al.’s (2016) Table 2. For 
the current heritability (H2 = 0.90), a ratio of phenotypic to 
GS estimated cost per genotype around 2 (€80 versus €40), 
and an effective number of chromosome segments below 
25 (as suggested by GWAS results), GS would be more 
convenient economically than phenotypic selection. The 
same result would apply to the adjusted grain yield of the 
population A×I (considering H2 = 0.57 and the same rela-
tive costs and effective number of chromosome segments). 
In addition, Rajsic et al.’s (2016) study for these traits 
under the current scenarios indicates that GS training sets 
per population as small as 96 RILs would be economically 
preferable for both traits. Indeed, our increase in the train-
ing genotype set obtained by combining the lines of the 
three populations resulted in modest accuracy gains.

Our comparison of interpopulation with intrapopu-
lation prediction accuracy is of special interest for pea 
breeding programs in which selection is performed on 
lines derived from many different crosses (where each 
cross provides relatively few tested lines) rather than 
many lines from a few crosses. In this case, the predic-
tion power of GS models devised for partly different 
material is bound to decrease because of partly different 
useful alleles, epistatic effects, etc. Our results suggest 
that the decrease in predictive ability when using a GS 
model trained in one RIL population for another popula-
tion (with one common parent line) may vary sharply 
depending on the specific set of populations, probably 
because of the relatively few useful alleles that featured 
the three biparental populations and the possibly marked 
effect of chance on pairs of parents showing polymor-
phism for these alleles. RIL populations with quite good 
predictive ability for each other may occur, as in the case 
of those sharing Kaspa as a parent, but some kind of 
preliminary assessment of different GS models based on 
phenotyping data of the target material is necessary to 
identify these cases. The only moderate predictive ability 

observed between most pairs of RIL populations sharing 
a common parent suggests the improbability of achieving 
good interpopulation predictions between populations 
having no common parent.

The GWAS study on pooled data of the three RIL 
populations confirmed at the genetic level the close 
relationship between onset of flowering and grain yield 
under severe terminal drought that emerged phenotypi-
cally. Also, it suggested that the many significant linked 
markers observed for each trait actually related to a 
small number of genomic regions, of which one on LG II 
already emerged as a key QTL colocating for flowering 
time and grain yield in the study by Ferrari et al. (2016). 
Interestingly, such colocalization emerged in that study 
even if its grain yield phenotyping was performed under 
quite different conditions—specifically, spring-sowing 
without rainout shelter, which resulted in much lower 
terminal drought (as indicated by a mean yield level of 
2.56 t ha−1). GWAS results for individual populations 
agreed largely with those of the pooled populations and 
confirmed Kaspa as the main donor of alleles linked to 
lateness and, therefore, lower grain yield. There are many 
pea flowering genes, which relate either to photoperiodic 
response or to temperature pattern (Weller and Ortega, 
2015). The important QTL on LG II is probably related 
to temperature pattern, since the marked flowering delay 
conferred by photoperiodic genes contrasts with the 
modest flowering delay exhibited by the donor parent for 
later phenology (Kaspa) compared with the other par-
ent lines (Annicchiarico, 2005). The current availability 
of many GBS-generated markers linked to this key QTL 
offers greater opportunity of exploitation relative to the 
few Illumina Array-linked markers detected by Ferrari 
et al. (2016). The results from GWAS could contribute 
to define marker-assisted selection procedures for grain 
yield. However, GS is expected to be more efficient than 
marker-assisted selection for polygenic traits, owing to 
its ability to take also account of minor genetic effects 
(Bernardo and Yu, 2007). Another advantage of GS is its 
simple and convenient weighing of the relative impor-
tance of major genetic effects within its model.

The lower association scores detected for adjusted 
grain yield relative to grain yield and onset of flowering 
were consistent with the markedly lower importance of 
yield responses associated with intrinsic drought toler-
ance relative to those associated with stress escape. Varia-
tion for traits conferring intrinsic drought tolerance is 
probably modest in elite modern pea cultivars (which are 
usually selected under favorable conditions) compared 
with landrace germplasm. This hypothesis is confirmed 
by the fact that several landraces displayed both higher 
grain yield and later phenology than modern variet-
ies in a recent evaluation of a global pea collection in a 
drought-stress environment of Italy (P. Annicchiarico, M. 
Romani, G. Cabassi, and B. Ferrari, unpublished data). 
Even in the presence of modest genetic variation, GWAS 
results suggested a relatively complex genetic control for 
yield responses accounted for by the adjusted yield (which 
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spanned several genomic regions), which is in agreement 
with its several possible contributing traits. Mechanisms 
of intrinsic drought tolerance may involve dehydration 
avoidance or dehydration tolerance, the former implying 
maintenance of water uptake or reduction of water loss, 
and the latter an osmotic adjustment (Sánchez et al., 1998; 
Turner et al., 2001). The distance of at least 35 cM on the 
same linkage group between genomic regions including 
different putative QTLs for this trait that was suggested by 
linkage analyses is consistent with LD decay for biparen-
tal populations (e.g., Tommasini et al., 2007). The comple-
tion of the ongoing pea-genome sequencing effort (Tayeh 
et al., 2015a) will offer new opportunities for locating 
putative QTLs on the genome and the possible discovery 
of genes underlying most important QTLs.

In conclusion, our study supports the potential value 
of GBS markers for developing accurate and low-cost 
GS models in pea. Some of our results can help optimize 
some steps of a GS analysis pipeline for this species, par-
ticularly for the ordinary context of selection performed 
on advanced lines issued by biparental crosses. Future 
work of ours will aim to assess the value of best-perform-
ing GS models in terms of actual pea yield gain in envi-
ronments characterized by severe terminal drought.

Supplemental Information Available
Supplemental Table S1. Sequence, association scores, source of polymor-
phism of markers associated with higher values for onset of flowering, grain 
yield, and adjusted grain yield and linkage disequilibrium of these markers 
with SNP array markers in the consensus map by Ferrari et al. (2016).
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