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A B S T R A C T

Participatory plant breeding (PPB) has gained increasing importance in developing countries, but its value for
market-oriented breeding programmes of countries with developed agriculture that are committed to pure line
selection (as needed to comply with DUS requirements) is unknown. This study aimed to compare PPB vs.
conventional plant breeding of pea (Pisum sativum L.) targeted to organic systems of Italy, exploring phenotypic
and genome-enabled selection approaches. Priority values assigned on a 0–5 scale to 14 traits by 18 farmers from
Northern and Central Italy and six breeders were used to define weights of farmer and breeder selection indexes.
Farmers and breeders attributed outmost importance to a visual acceptability score assigned a few weeks before
crop maturity on a 1–9 scale, followed in importance by grain yield and tolerance to lodging. However, breeders
and farmers differed (P < 0.05) for trait importance in a few cases. Five phenotypic selection criteria (farmer
selection index; breeder selection index; average of farmer and breeder selection indexes; grain yield; farmer
acceptability score) were applied onto 306 lines evaluated in two researcher-managed experiments of Northern
and Central Italy under organic crop management, selecting overall nine lines per criterion that were tested in
four organically-managed environments of the same regions and one conventionally-managed site. The farmer
selection index exhibited greater selection efficiency (+23% based on yield gains over elite commercial cultivars
under organic farming) and farmer’s acceptability of selected material than the breeder selection index. Breeding
values based on the farmer selection index or the farmer acceptability score exhibited greater correlation with
grain yields in independent environments than those from breeder selection criteria. Compared with grain yield-
based selection, selection for the farmer acceptability score performed comparably in terms of yield gains, and
somewhat better according to correlations of its breeding values with line grain yields in independent en-
vironments. The accuracy of genome-enabled predictions issued by a Bayesian Lasso model with 3443 SNP
markers generated by genotyping-by-sequencing, estimated by averaging cross-environment correlations be-
tween predicted and observed values over two locations, was very high for the farmer acceptability score
(rAc = 0.77), and high for grain yield (rAc = 0.59). Genomic selection for the farmer acceptability score ranked
first in a preliminary comparison of eight genome-enabled or phenotypic selection criteria based on correlations
of breeding values with grain yields in independent environments, suggesting its adoption for preliminary
screening of genotype sets that are too numerous for field-based evaluation.

1. Introduction

Participatory plant breeding (PPB) alias client-oriented breeding, in
which farmers select from segregating material, has gained increasing
importance for field crop improvement in developing countries, where
it showed greater farmer’s acceptability and faster adoption of new

cultivars than conventional breeding (Ashby, 2009; Witcombe and
Yadavendra, 2014; Ceccarelli, 2015). PPB implies much greater impact
of farmers’ preferences on newly-released cultivars than participatory
variety selection, in which farmers’ preferences are expressed on ge-
netically-fixed material previously selected by breeders (Witcombe
et al., 1996). Comparisons of farmers vs. breeders for target traits
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revealed that both groups assigned top priority to higher crop yield, but
sometime differed for other traits. For example, farmers attributed
importance to straw characteristics and neglected disease tolerance for
barley in West Asia and North Africa (Ceccarelli et al., 2001), whereas
specific grain quality characteristics were sometime overlooked by
breeders (e.g., Asfaw et al., 2012). Comparisons of PPB vs. conventional
breeding in terms of yield gain per unit of time and/or cost in farmers’
fields did not provide univocal results, but mostly indicated the su-
periority of PPB when breeders selected on station but not when they
selected on farm (Ceccarelli et al., 2001, 2003; Virk et al., 2003;
Trouche et al., 2011). PPB may also provide other advantages relative
to conventional breeding, such as farmer empowerment (Ashby, 2009)
and greater biodiversity of cultivated material. For inbred crops, greater
biodiversity may arise from independent farmer selection in many
different farms according to a decentralized breeding approach
(Ceccarelli and Grando, 2007), as well as from selecting evolutionary
populations or pure line mixtures according to centralized approaches
(where selection takes place in researcher-managed trials) or decen-
tralized ones (Murphy et al., 2005; Döring et al., 2015). PPB-based
selection of pure lines, however, does not necessarily increase biodi-
versity, particularly for crops targeted to markets rather than to sub-
sistence (Witcombe et al., 1996).

Several reasons have contributed to the success of PPB in developing
countries. Commercial or public breeding programmes often rely on
poor infrastructure, and may lack sufficient technical skills. The oc-
currence of large genotype × environment interaction (GEI) between
relatively favourable on-station selection environments and unfavour-
able farmer fields, and the presence of wide variation among target
environments for prevailing abiotic or biotic stresses, favour the ex-
ploitation of positive GEI effects through decentralized farmer selection
in many diversified target environments (Atlin et al., 2001; Ceccarelli
et al., 2003). Informal seed systems, in which heterogeneous cultivars
of inbred crops are fully acceptable, and farmer’s self-production of
seed, usually are very important in these countries (Almekinders et al.,
1994). Hand sowing, which facilitates the on-farm assessment of many
breeding lines, is widespread.

PPB has received modest attention in countries with developed
agriculture, with the exception of potato breeding in the Netherlands
(whose success has been favoured by various factors, such as the crop
vegetative propagation, long-standing crop knowledge by farmers,
early public support and the strong link with private breeding compa-
nies: Almekinders et al., 2014). In these countries, PPB has mostly been
envisaged for organically-managed environments and, in inbred crops,
for selecting heterogeneous material (Murphy et al., 2005; Wolfe et al.,
2008; Dawson et al., 2011). While the possible variety registration of
heterogeneous material is under evaluation in the European Union
(Lammerts van Bueren et al., 2018), the value of PPB for market-or-
iented breeding programmes of developed countries aiming to select
pure lines (as needed to comply with current DUS requirements for
variety registration) is unknown. In general, PPB may prove less useful
in these countries than in developing ones, because of the good infra-
structure and efficiency of their conventional breeding programmes and
the expected difficulty of their farmers to evaluate many lines (which
contrasts with the widespread availability by breeding programmes of
equipment that facilitates the researcher-managed evaluation of many
lines). In addition, target environments of agriculturally developed re-
gions tend to be less stress-prone and diversified than those in devel-
oping countries, thereby offering less opportunities for the exploitation
of positive GEI effects. In this situation, a convenient option for PPB
could be a centralized participatory approach, in which farmers display
a “consultative” role by selecting within researcher-managed fields.
This approach may well include different selection sites, in order to
exploit repeatable GEI effects across contrasting subregions or to
minimize poorly repeatable GEI (Annicchiarico, 2009). For selection
environments that match well the target environments, such a cen-
tralized approach may prove as efficient as a decentralized one

(Ceccarelli et al., 2001; Virk et al., 2003). On the other hand, however,
properly chosen selection environments can effectively improve the
value of researcher-based selections (Bänziger and Cooper, 2001;
Ceccarelli et al., 2003; Rattunde et al., 2016).

Field pea (Pisum sativum L.) is the most-grown cool-season grain
legume in Europe, where it displays a key role as a source of feed
proteins as well as to safeguard the sustainability of agricultural sys-
tems in terms of soil fertility, energy efficiency, greenhouse gas emis-
sions and crop diversity (Watson et al., 2017). Pea is an inbred crop
with relatively high rate of genetic yield gain, estimated as 1.3% per
year based on international cultivars evaluated in Italy (Annicchiarico,
2017). Grain yield data from different sets of pea genotypes across
conventionally-managed or organically-managed Italian environments
highlighted a need to breed for wide adaptation over the country, be-
cause of the larger size of temporal GEI effects relative to spatial GEI
effects associated with wide year-to-year variation for timing and extent
of winter cold stress (Annicchiarico and Iannucci, 2008).

In large-scale breeding programmes, another challenge of PPB is its
integration with genome-enabled selection tools. Genomic selection
(GS), which is fully compatible with organic plant breeding (Nuijten
et al., 2017), may enable breeders to predict complex, polygenic traits
by means of a statistical model constructed from genome-wide marker
information (Meuwissen et al., 2001; Heffner et al., 2010). Next gen-
eration sequencing techniques such as genotyping-by-sequencing (GBS;
Elshire et al., 2011), which can provide thousands of single-nucleotide
polymorphism (SNP) markers for a relatively low cost, have facilitated
the application of GS to crops. Pioneer studies on grain legume species
such as soybean (Jarquín et al., 2014) and pea (Annicchiarico et al.,
2017a) have revealed the good ability of genome-enabled models to
predict line breeding values for grain yield, and suggested the pro-
gressive adoption of GS as a partial substitute for phenotypic selection
on the basis of greater predicted genetic gain per unit of time and/or
cost of this selection procedure (Annicchiarico et al., 2017b).

A major objective of this study was to assess whether PPB can be
beneficial for yield improvement of an inbred crop such as pea in a
relatively large-scale, market-oriented breeding programme with a
major focus on organic systems of Italy (whose extent has reached a
share of 14.5% of the Italian cropping area according to EUROSTAT). We
assessed phenotypic selection either based on individual traits such as
grain yield and a farmer acceptability score or based on trait combi-
nations as expressed by selection indexes defined according to priority
traits for farmers and breeders, with farmer and breeder selections
performed in researcher-managed trials under organic crop manage-
ment. Concurrently, this study explored the variation among farmers
and breeders with respect to priority traits for pea breeding. Another
major aim of this study was to explore the ability of genome-enabled
selection to predict pea line breeding values for grain yield and the
farmer acceptability score, and to compare preliminarily these selection
approaches with phenotypic ones.

2. Materials and methods

2.1. Assessment of priority traits for farmers and breeders

This assessment was based on responses from (i) six researchers, of
whom three were current or past pea breeders belonging to public in-
stitutions, and three belonged to private seed companies that are rou-
tinely committed to evaluation in Italy of candidate varieties bred in
France, and (ii) 18 organic pea growers selected by Associazione
Italiana Agricoltura Biologica (AIAB), of whom nine were from
Northern Italy and nine from Central Italy. All of them were asked to
assess the importance of 14 traits listed in Table 1 on a scale ranging
from 5 = very high to 0 = nil. One trait, namely, a visual acceptability
score, implied its field observation by the actor (farmer or breeder). The
other traits could be measured by a researcher for use in PPB or con-
ventional breeding.
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Breeder vs. farmer groups were compared for mean priority value of
each trait by t test. The variation among individual actors for the whole
set of priority traits (which identified the target plant type) was syn-
thetically displayed by actor scores on the first two axes of principal
component analysis that held trait priority values as original variables.
All statistical analyses of these data and of phenotypic data were per-
formed using SAS/STAT® software (SAS Institute, 2011).

2.2. Genetic base for selections

The genetic base for performing phenotypic selection and defining
GS models included 306 genotypes belonging to three connected re-
combinant inbred line (RIL) populations that originated from paired
crosses between Attika (a European cultivar described as a spring-type),
Isard (a French winter-type cultivar) and Kaspa (an Australian cultivar
of Mediterranean type). According to Witcombe and Virk (2009), who
recommended the use of relatively few carefully-chosen parent culti-
vars for PPB of inbred crops, these parent cultivars were selected among
nearly 50 international cultivars that underwent extensive multi-en-
vironment testing. The three parent cultivars displayed high and stable
grain yield and modest phenological differences across sites of Northern
and Southern Italy (Annicchiarico, 2005; Annicchiarico and Iannucci,
2008). In addition, Attika showed outstanding adaptation to organic
farming (Annicchiarico and Filippi, 2007). The RIL populations are
coded henceforth as A × I, K × A and K × I from the initials of their
respective parents. The population A × I included 102 lines; the po-
pulation K × A, 100 lines; and the population K × I, 104 lines. Four F6

plants per line were grown in a non-heated glasshouse to collect DNA
samples for line genotyping and to produce seed, which underwent one
additional generation of multiplication before being used for experi-
ments.

2.3. Selection experiments

The 306 RILs and their parent cultivars underwent two selection
trials in the seasons 2013-14, which are described as Experiment 1 and
2 in Table 2. The trials were performed in an organic farm of Lodi
(45°19ʹN, 9°30ʹE), a site representative of the subcontinental climate
typical of Northern Italy, and in a field with long-standing organic
management in Perugia (43°06ʹN, 12°23ʹE), a location with a cool
Mediterranean climate that is widespread in Central Italy and inland

Southern Italy (Table 2). Each plot had 0.96 m2 size, included four rows
1.2 m long and 0.2 m apart, and was sown at 62.5 seeds/m2 density by a
pneumatic seed drill. These and all following experiments were au-
tumn-sown in October or November, were harvested in June, and were
designed as a randomized complete block with three replications. Each
parent line was replicated thrice within each block.

Farmer and breeder acceptability scores were attributed a few
weeks before crop maturity by a scale ranging from 9 = very high to 1
= very low, allowing for half-unity values. Farmer scores were attrib-
uted by nine farmers from Northern Italy in Lodi and nine from Central
Italy in Perugia. In each site, farmers were subdivided into three groups
of three farmers each, and each group assessed one experiment re-
plication. In front of each plot, farmers exchanged their opinions but
eventually provided individual scores, which were averaged prior to
statistical analyses. Breeder acceptability scores were attributed by
three different breeders in each location. Each breeder assessed one
replication in each site. Farmers and breeders were the same who de-
fined priority traits for the respective groups.

The following traits were recorded on a plot basis: (i) dry grain
yield, after combine-harvesting the plot and assessing seed moisture on
a random sample of 250 seeds; (ii) onset of flowering, as the number of
days from January 1 to when 50% of plants showed at least one open
flower; (iii) mean plant height at flowering; (iv) lodging susceptibility,
visually assessed at maturity on a 5-level scale ranging from 1 (lodging
limited to the basal part of the stem) to 5 (complete lodging); (v) in-
dividual dry seed weight, assessed on the seed sample used for seed
moisture determination; (vi) dry aerial biomass, recorded only in Lodi.
Of the other possible target traits for farmer or breeder selection that
are listed in Table 1, tolerance to winter low temperatures, ascochyta
blight complex (Peyronellaea pinodella (L.K. Jones) Morgan-Jones & K.B.
Burch., Peyronellaea pinodes (Berk. & A. Bloxam) Aveskamp, Gruyter &
Verkelv, and Ascochyta pisi Lib.) and Fusarium spp. could not be assessed
because of lack of sizeable stress, whereas maturity time and semi-
leaflessness were irrelevant, the first because of lack of breeder vs.
farmer group difference for priority score (Table 1), and the latter be-
cause all lines were semi-leafless. Finally, grain protein content and first
pod height were not recorded (but group differences for these traits
were very limited: Table 1).

The significance of genotypic and GEI effects across selection en-
vironments was verified separately for each RIL population by an
analysis of variance (ANOVA) including the random factors genotype,
environment, and block within environment. Genotypic (SG2) and GEI
(SGE2) variance components for grain yield and the farmer and breeder
acceptability scores were estimated by a restricted maximum likelihood
method for each RIL population, assessing the genetic coefficient of
variation across selection environments [CVg = (SG2/m)×100, where
m = trait mean value] and the ratio of SGE2 to SG2. To get some insight
into key traits associated with farmer and breeder acceptability scores,
we assessed trait correlations for each RIL population using genotype
data averaged across selection environments, averaging results across
the populations.

Five phenotypic selection criteria were assessed, namely, farmer
selection index, breeder selection index, average of farmer and breeder
selection indexes (implying the co-selection by the two groups), grain
yield, and farmer acceptability score. Mean priority values for farmer
and breeder groups that are reported in Table 1 were used as weights of
a selection index defined for farmer or breeder groups as described by
Bänziger et al. (2000, p. 45). For a given index, its value for the line i
was:

Ii = w1 T1i + w2 T2i + … wn Tni

where Tni is the observed standardized value of the trait Tn for the line i,
and wn is the weight attributed by the relevant group to the trait
(adopting negative weight value for lodging susceptibility, where lower
values were actually desired). Line trait values were averaged across

Table 1
Comparison of farmer vs. breeder groups for mean priority value attributed to
14 pea traits on a scale ranging from 5 = very high to 0 = nil. The reported
values for selected traits were used as weights of a selection index defined for
each group.

Trait Farmers Breeders t testa

Visual acceptability scoreb 5 5 ns
Grain yieldb 4.61 4.83 ns
Aerial biomassb 1.86 3.33 *
Cold tolerance 4.03 4.08 ns
Lodging toleranceb 4.22 4.58 ns
Ascochyta blight tolerance 2.22 3.75 *
Fusarium spp. tolerance 2.19 3.08 ns
Early floweringb 2.83 3.33 ns
Early maturity 3.17 3.17 ns
Plant height at floweringb 2.33 2.83 ns
Semi-leaflessness 2.56 4.50 *
Individual seed sizeb 0.86 0.83 ns
Grain protein content 4.22 3.92 ns
First pod height 3.45 3.67 ns

a Relative to 18 farmers and six breeders.
b Traits used for index definition, using data from Experiment 1 for aerial

biomass and data averaged across Experiments 1 and 2 for the other traits
(experiments are described in Table 2). Data for traits excluded from index
definition were either unavailable or irrelevant.

P. Annicchiarico et al. Field Crops Research 232 (2019) 30–39

32



locations (with the exception of aerial biomass, recorded only in Lodi)
before standardization. For each selection criterion, we selected the
three top-ranking lines within each RIL population, for evaluation in
independent test environments.

2.4. Comparison of phenotypic selection criteria

All the lines selected according to each criterion were evaluated in
four organically-managed test environments described as Experiments
4 to 7 in Table 2, which were represented by site-year combinations
relative to Lodi and Perugia in the seasons 2014-15 and 2015-16. The
selected lines were less than the possible maximum number of 45 (5
criteria × 3 lines × 3 RIL populations), because many of them were
selected according to more than one criterion. The experiments in-
cluded also some additional high-yielding lines that were selected from
the same RIL populations (for a total of 31 lines), the three parent
cultivars, and three reference cultivars, i.e., Spacial, Pepone and Fraser,
which displayed excellent adaptation across organically-managed en-
vironments of Northern and Central Italy in recent variety trials (Pecetti
et al., 2014). These experiments had 6.5 m2 plot size and adopted 105
seeds/m2 sowing density (as allowed for by the availability of greater
seed amounts for these trials). The farmer acceptability score was at-
tributed by six farmers from Northern Italy in Lodi and six from Central
Italy in Perugia, of whom four participated in the selection trials and
two were novel participant farmers in each site. Dry grain yield, onset
of flowering, plant height at flowering, and lodging susceptibility, were
recorded as described earlier.

Differences among germplasm selected according to different cri-
teria and other reference germplasm were assessed by an ANOVA that
included the fixed factors germplasm (with seven variants, of which five
were relative to sets of lines selected according to each criterion, and
two were relative to parent germplasm and elite cultivar germplasm,
respectively) and genotype within germplasm, and the random factors
environment and block within environment. Accordingly, GEI acted as
the error term for testing the variation in germplasm mean values.

The same 31 lines and the parent cultivars were also evaluated for
dry grain yield in a conventionally-managed test environment relative
to Lodi in 2014-15, described as Experiment 3 in Table 2. This trial
adopted same plot size and sowing density as the selection experiments,
along with pre-sowing mineral fertilization (24 kg/ha N, 72 kg/ha P2O5,
and 72 kg/ha K2O) and chemical weed control [(Stomp® 330 E (a.i.
Pendimethalin at 307 g/L)]. Differences among germplasm groups were
assessed by an ANOVA including the factors germplasm, genotype
within germplasm, and block.

We compared the five phenotypic selection criteria, the additional
phenotypic criterion represented by the breeder acceptability score,
and two genome-enabled criteria relative to GS for grain yield and
farmer acceptability score (described later on), in terms of correlation

of line breeding values estimated (phenotypic criteria) or modelled
(genome-enabled criteria) from data averaged across the selection en-
vironments (Experiments 1 and 2) with line grain yields observed (i)
across four independent organically-managed test environments
(Experiments 4 to 7, for 31 lines), and (ii) in the conventionally-man-
aged test environment represented by Experiment 3 (averaging results
for the three RIL populations). Differences between pairs of correlation
coefficients were verified as described by Dagnelie (1975, p. 321).

2.5. Genotyping and genotype SNP calling

Details on DNA isolation, GBS library construction and sequencing
of the 306 lines were provided in Annicchiarico et al. (2017a). In brief,
DNA was extracted from green tissue that was collected from bulked
stipules of four F6 plants per line using the CTAB method described by
Rogers and Bendich (1985), checking its quality on 1% agarose gel. We
adopted the GBS protocol based on the ApeKI restriction enzyme that
was described by Elshire et al. (2011), with modifications. After
quantification by a Quant-iT™ PicoGreen® dsDNA assay kit (Life Tech-
nologies, P7589), each DNA sample (100 ng) was digested with ApeKI
(NEB, R0643 L) and then ligated to a unique barcoded adapter plus a
common adapter. Equal volume of the ligated product was pooled and
cleaned up with QIAquick PCR purification kit (QIAGEN, 28,104) for
subsequent amplification. In PCR, 50 ng template DNA was mixed with
two primers and KAPA Library Amplification Readymix (KAPA Bio-
systems KK2611). Amplification was carried out on a thermocycler for
10 cycles with 10 s of denaturation at 98 °C, followed by 30 s of an-
nealing at 65 °C and 30 s extension at 72 °C. Each library was sequenced
in two lanes on Illumina HiSeq 2000 at the Genomic Sequencing and
Analysis Facility of the University of Texas, Austin, TX.

We used the UNEAK pipeline for SNP discovery and genotype
calling, filtering the raw reads (100 bp, single end read) to keep only
reads having a barcode and a single cut site and no missing bases in the
useful part of the sequence (first 64 bases). All reads beginning with the
expected barcodes and cut site remnant were trimmed to 64 bp,
grouping identical reads into one tag, and using tags with 10 or more
reads across all individuals for pairwise alignment aimed to find tag
pairs that differed by one bp. For each SNP marker, the read distribu-
tion of the paired tags in each individual was used for SNP genotype
calling. A further quality filter, implemented through ad hoc Python
scripts, removed markers with fewer than 4 aligned reads. The data set
was filtered for five possible data configurations that were relative to
maximum thresholds of allowed genotype missing values per SNP
marker equal to 10%, 20%, 30%, 40%, or 50%. Markers that were
monomorphic or with minor allele frequency < 2.5% were removed.
Following Nazzicari et al. (2016), we estimated missing data by
Random Forest imputation (Breiman, 2001) using the R package Mis-
sForest (Stekhoven and Bühlmann, 2012) with the configuration

Table 2
Climate and soil characteristics and mean grain yield of seven pea experiments. Experiments 1 and 2 were used for phenotypic selection according to five different
criteria and for genomic selection modelling of grain yield and farmer acceptability score; the remaining experiments were used for comparison of selection criteria.

Item Experiment 1a Experiment 2a Experiment 3a Experiment 4b Experiment 5b Experiment 6b Experiment 7b

Location Lodi Perugia Lodi Lodi Perugia Lodi Perugia
Cropping year 2013-14 2013-14 2014-15 2014-15 2014-15 2015-16 2015-16
Crop management system Organic Organic Conventional Organic Organic Organic Organic
Rainfall, Jan.-Mar. (mm) 343 280 198 198 223 258 194
Rainfall, Apr.-May (mm) 122 179 147 147 73 147 217
Absolute minimum daily temp. (°C) –5.7 –3.6 –11.6 –11.6 –2.9 –12.0 –5.4
Mean of max. daily temp., May (°C) 23.2 23.4 23.9 23.9 26.0 21.8 22.7
Soil texturec Silty-loam Silty-clay-loam Sandy-loam Loam Silty-clay-loam Silty-loam Silty-clay-loam
Soil pH 7.9 7.6 6.3 7.7 7.6 7.9 7.6
Grain yield (t/ha) 6.31 2.90 4.59 1.06 3.09 0.95 1.81

a Testing 306 recombinant inbred lines from three connected crosses (each including 100 to 104 lines) and three parent cultivars.
b Testing 31 lines, three parent cultivars and three elite commercial cultivars.
c According to FAO (2006).
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ntree = 100, maxiter = 10, and encoding genotypes as categorical data
(factors).

2.6. Assessment of genomic selection criteria

GS was explored for grain yield and the farmer acceptability score
using best linear unbiased prediction (BLUP) values from Experiments 1
and 2 computed according to DeLacy et al. (1996). We assessed two GS
models that stood out for predictive ability in a previous comparison of
models for pea grain yield (Annicchiarico et al., 2017a), namely, Ridge
regression BLUP (rrBLUP; Searle et al., 2009), and Bayesian Lasso (BL;
Park and Casella, 2008). Details on the implementation of these models
were given in Annicchiarico et al. (2017a), where a brief model de-
scription was also reported. The impact of population structure, which
may improve the predictive ability of GS models (Guo et al., 2014), was
taken into account by the possible addition in the model of a RIL po-
pulation fixed factor as a 3×n incidence matrix, where n is the number
of samples. Overall, we assessed for each trait 20 GS models produced
by the factorial combination of BL or rrBLUP models by absence or
presence of imputed population structure by maximum missing data
thresholds per SNP marker of 10%, 20%, 30%, 40%, or 50%.

We assessed the cross-environment predictive ability (rab) of each
model as Pearson’s correlation between the breeding values predicted
by the model built in one site and the phenotypic values in the other site
of independent lines selected by a stratified cross validation scheme
keeping 90% of lines for modelling and 10% for validation that was
repeated 50 times, averaging the individual results obtained for each
RIL population. These rab values were used to estimate predictive ac-
curacy (rAc) values according to Lorenz et al. (2001) as: rAc = rab / H,
where H is the square root of the broad-sense heritability on a genotype
mean basis (H2) in the validation environment. H2 value was estimated
as: H2 = SG2 / (SG2 + Se2 / n), where SG2 and Se2 are variance com-
ponents for genotype and experimental error, respectively, and n is the
number of experiment replications. Regression models, cross-valida-
tions and predictive ability estimation were carried out using the R
package GROAN (Nazzicari and Biscarini, 2017).

Genome-enabled predictions of grain yield and farmer acceptability
score of the 306 lines were finally implemented by the top-performing
model represented by BL with imputed population structure and max-
imum missing data threshold of 30%, using line phenotypic data
averaged across the two selection environments. As anticipated, these
GS criteria and six phenotypic selection criteria were compared in terms
of correlation of line breeding values estimated or modelled from data
of Experiments 1 and 2 with line grain yields across the organically-
managed Experiments 4 to 7 or the conventionally-managed
Experiment 3.

3. Results

3.1. Assessment of priority traits for farmers and breeders

On average, farmers attributed significantly (P < 0.05) lower im-
portance than breeders to greater aerial biomass, to ascochyta blight
tolerance and the semi-leaflessness trait, on the ground of mean priority
values reported in Table 1. Both groups attributed outmost importance
to their own visual acceptability score, which was followed in im-
portance by grain yield and tolerance to lodging (Table 1). Individual
seed size was unanimously ranked as the least important trait.

The overall variation for priority trait values between and within
farmer and breeder groups is graphically represented by scores of in-
dividual actors in the space of the first two PC axes (Fig. 1), which
summarized 49% of the total variation. Based on trait eigenvectors, PC
1 mainly indicated greater importance attributed to semi-leaflessness
and to tolerance to ascochyta blight, Fusarium spp. and lodging,
whereas PC 2 indicated relatively greater preference for higher grain
yield and lower biomass (data not reported). The variation among

farmers was partly accounted for by geographic provenance, as farmers
from Central Italy tended to display lower PC 1 score than those from
Northern Italy (Fig. 1). Breeders, which tended to belong to the right
lower corner of the graph, showed greater mismatch for overall tar-
geted plant type with farmers from Central Italy than with those from
Northern Italy (Fig. 1).

3.2. Comparison of phenotypic selection criteria

Lodi’s selection environment, while featuring the expected lower
level of winter low temperature relative to Perugia’s, was definitely
milder-winter and higher-yielding than Lodi’s test environments used
for comparing selection criteria in the following two years (Table 2).
Crop mean yield in these latter environments was particularly low
under organic management, because of plant mortality and plant da-
mage caused by low winter temperatures, severe weed competition
exerted in spring on less dense and vigorous pea stands and, to some
extent, because of apparently outstanding weed occurrence in the
chosen fields. Perugia’s selection environment matched more closely
the climatic conditions of this site in the following years (Table 2).

ANOVAs for each RIL population unanimously showed significant
GEI across selection environments for grain yield, onset of flowering
and seed weight (P < 0.05), and no GEI for the farmer and breeder
acceptability scores and tolerance to lodging. Accordingly, the GEI to
genotypic variance component ratio was close to zero for the farmer
and breeder scores, while being moderately high for grain yield
(Table 3).

On average, farmer and breeder groups visiting the selection ex-
periments rated the lines on the 1–9 acceptability scale with similar
severity on the basis of group means over lines and locations (4.47 vs.
4.89). However, the distinctly lower genetic CV of the farmer score
relative to the breeder score (11.7 vs. 17.3%; Table 3) indicated that
extreme positive or negative values were less frequent in the farmer
assessment.

Farmer and breeder acceptability scores averaged across selection
environments exhibited moderately high correlation (r= 0.78), ac-
cording to results averaged across RIL populations. The farmer score
tended to be somewhat more correlated with grain yield (r = 0.66) than
the breeder score (r= 0.60). In contradiction with the higher interest
for greater aerial biomass stated by breeders relative to farmers
(Table 1), the correlation with aerial biomass was slightly higher for the
farmer score (r = 0.59) than the breeder score (r= 0.52). Finally and
specifically for the test genetic base, the preference for early-flowering
material that was declared by farmers and breeders (Table 1) contrasted
with the correlation of the farmer and breeder scores with later onset of
flowering (r= 0.62 for both groups).

Fig. 1. Scores of 18 farmers from Northern and Central Italy and six breeders on
the first two axes (PC) of principal component analysis performed on priority
values attributed to 14 pea traits (priority ranging from 5 = very high to 0 =
nil; traits listed in Table 1; PC 1 and PC 2 explaining 32% and 17%, respec-
tively, of the overall variation).
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Significant (P < 0.05) variation among germplasm groups (five
groups relative to lines selected according to different criteria, and two
groups relative to parental or reference cultivars) and within germ-
plasm groups was found for all traits assessed across the four organi-
cally-managed test environments (P < 0.05). However, no difference
among selection criteria was found for seed size (P > 0.05). The in-
teraction with environments of germplasm groups and lines within
groups was always significant (P < 0.05), except for grain yield of
germplasm groups.

On average, all selections exhibited a distinct progress in terms of
grain yield and farmer’s acceptability across the four organically-man-
aged test environments not only relative to the parent cultivars but also
relative to the elite commercial cultivars, although the latter cultivars
were earlier-flowering and more tolerant to lodging (Table 4). Inter-
estingly, the germplasm selected by the farmer index was top-yielding
and out-yielded the material selected according to the breeder index by
5.7% (1.824 vs. 1.726, P < 0.05; Table 4). When assessing the selec-
tion efficiency of the selection criteria in terms of actual yield gain over
the mean of the elite commercial cultivars, the farmer index-based
criterion was 23% more efficient than the breeder index-based criterion
(0.523 vs. 0.425 t/ha yield gain), and showed no increase in efficiency
from its integration with the breeder index-based criterion (Table 4).
However, germplasm selection based only on grain yield was nearly as
efficient as the farmer index-based selection (Table 4), whereas the
selection based on a simple criterion such as the farmer acceptability
score was about 8% less efficient (0.479 vs. 0.523 t/ha yield gain) but
not statistically worse than the farmer index-based selection (Table 4).
Breeder selections, compared with farmer selections based on the se-
lection index or the appreciation score, were less appreciated by
farmers (P < 0.05) and showed a slight trend towards shorter stature
and earlier flowering (Table 4). However, the particularly high im-
portance attributed by breeders to tolerance to lodging (Table 1)

resulted in greater tolerance to lodging of breeder index-based selec-
tions relative to selections based on the farmer score or grain yield
(Table 4).

In the experiment performed in one conventionally-managed test
environment, the breeder index-based selections were out-yielded by
farmer selections based on the appreciation score (P < 0.05), and
tended to display lower yield than selections based on the other criteria
(Table 4).

3.3. Assessment of genomic selection criteria

The UNEAK pipeline applied to GBS data produced a gross total of
95,740 SNP markers. The actual number of polymorphic markers
available for GS increased as a function of the allowed genotype missing
data threshold, ranging from 462 for 10% missing rate to 7521 for 50%
missing rate. For both grain yield and the farmer acceptability score,
the results summarized in Fig. 2 indicated: (i) the similar accuracy of BL
and rrBLUP models without or with imputed population structure, with
some advantage of population structure only for predicting grain yield
in Lodi based on data from Perugia; (ii) a plateau of predictive ability
achieved around 30% genotype missing data threshold, with nil or
negligible improvements thereafter; (iii) the similar value of each site
providing phenotyping data (GS model training site) for predicting re-
sponses in the other site. The BL model with imputed population
structure and 30% genotype missing data threshold displayed a slight
advantage over the other models when averaging results across traits.
The predictive accuracy of this model averaged across RIL populations
and cross-environment validations was very high for the farmer ac-
ceptability score (rAc = 0.77), and high for grain yield (rAc = 0.59).
This model was selected for the final modelling of genotype breeding
values for the two traits based on phenotypic data averaged across the
two sites.

Table 3
Genetic coefficient of variation and ratio of genotype × environment interaction (GEI) to genotypic variance for grain yield and farmer and breeder accept-
ability scores.

Itema Grain yield Farmer acceptability Breeder acceptability

Genetic coefficient of variation 14.6 11.7 17.3
GEI / Genotypic variance ratio 0.50 0.03 0.05

a Across Experiments 1 and 2 described in Table 2. Average value for three recombinant inbred line populations, each including 100–104 lines. G var-
iance ≠ 0 for each trait and population (P < 0.01); GEI variance ≠ 0 only for grain yield, in each population (P < 0.05).

Table 4
Mean value of pea germplasm selected according to five selection criteria (farmer selection index; breeder selection index; average of farmer and breeder selection
indexes; grain yield; farmer acceptability score), three parent cultivars and three elite commercial cultivars, for dry grain yield and other traits in independent
experiments.

Germplasma Average of four experimentsb One experimentc

Grain yield
(t/ha)

Farmer acceptability score
(1=lowest, 9=highest)

Plant height at
flowering (cm)

Onset of flowering
(dd from Jan 1)

Lodging susceptibility
(1=lowest, 5=highest)

Grain yield (t/ha)

Selected by farmer index 1.824 a 4.68 a 60.7 ab 107.4 ab 1.87 ab 5.966 ab
Selected by breeder index 1.726 b 4.36 b 58.4 b 106.6 b 1.79 b 5.227 b
Selected by farmer + breeder

indexes
1.811 a 4.65 a 61.6 a 108.0 a 1.88 ab 5.882 ab

Selected by grain yield 1.819 a 4.63 a 59.9 ab 107.4 ab 2.05 a 6.025 ab
Selected by farmer acceptability

score
1.780 ab 4.61 a 60.8 ab 108.4 a 2.06 a 6.227 a

Three parent cultivars 1.285 c 3.53 c 47.2 c 102.8 c 2.07 a 3.489 c
Three commercial cultivars 1.301 c 3.08 d 44.1 d 103.5 c 1.46 c −
Least significant difference

(P < 0.05)
0.071 0.22 1.9 1.1 0.22 0.841

a Selection index weights are given in Table 1. For each selection criterion, selection of three top-performing lines from each of three recombinant inbred line
populations issued from three connected crosses (each including 100 to 104 lines), based on pooled data from the organically-managed Experiments 1 and 2
described in Table 2. Column means with different letter differ at P < 0.05 according to Duncan’s test.

b Organically-managed Experiments 4–7 described in Table 2. Error term for mean comparison is germplasm × environment interaction.
c Conventionally-managed Experiment 3 described in Table 2.
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Table 5 reports results for the preliminary comparison of eight
phenotypic or genome-enabled selection criteria based on correlations
between line breeding values obtained or modelled from selection ex-
periments and line grain yields observed in independent test environ-
ments. Both the correlation assessment based on genotype yields
averaged across four organically-managed experiments (which had
larger and more meaningful sampling of the target environment), and
that based on one conventionally-managed environment (which had
larger germplasm sampling), revealed higher correlations for selection
criteria that exploited genome-modelled data in comparison with those
that exploited phenotypic data of a given trait (grain yield or the farmer
acceptability score) (Table 5). The selection criterion based on genome-
enabled prediction of the farmer score ranked consistently first for
correlation value (Table 5). It significantly (P < 0.05) out-performed
any phenotypic selection criterion in at least one assessment, with the
exception of the phenotypic farmer score, which ranked first among the

phenotypic criteria according to correlation results. Breeding values
estimated according to the farmer selection index or the farmer ac-
ceptability score displayed higher correlation with line yields in in-
dependent environments than values estimated according to the cor-
responding breeder-based criteria, particularly across organically-
managed test environments (Table 5).

4. Discussion

4.1. Priority traits for farmers and breeders

Various studies showed that farmers value, and would select for, sev-
eral plant characteristics (Weltzien and Christinck, 2009). Accordingly, we
envisaged multi-trait phenotypic selection by farmers and breeders based
on selection indexes whose weight would reflect the priority assigned by
these groups to different traits. Considering that breeders targeted also
conventional systems beside organic ones (unlike farmers), the relatively
greater importance that they attributed to two traits of putatively high
interest under organic farming, i.e., tolerance to ascochyta blight and
greater aerial biomass [where the latter can confer greater pea competitive
ability against weeds: McDonald (2003); Annicchiarico and Filippi
(2007)], was not expected. However, the occurrence of ascochyta blight
and Fusarium spp. was visually limited in all experiments, and the modest
impact of these diseases in Central Italy reported by farmers from this
region contributed to the difference for overall targeted plant type be-
tween these farmers and the farmers from Northern Italy or the breeders.
An attitude by PPB-contributing farmers to neglect tolerance to diseases
with a modest impact on crop yields was reported for barley by Ceccarelli
et al. (2003). The lower importance attributed by current farmers to aerial
biomass relative to breeders was actually contradicted - and likely coun-
terbalanced in their selection index - by the somewhat higher correlation
with this trait of the farmer acceptability score relative to the breeder
score. Finally, the inconsistency between stated preference for early-
flowering material and greater score attributed to late-flowering lines
should not be seen as a real contradiction, because the current plant ma-
terial tended to be intrinsically early. However, a PPB initiative may en-
visage a circularity process between farmers’ criteria for index-based se-
lection and farmer acceptability, by which trait preferences are
periodically re-assessed in view of the specific characteristics of the genetic
base and the actual desiderata suggested by the acceptability score.

Fig. 2. Cross-environment predictive accuracy
of genomic selection using Bayesian Lasso (BL)
or Ridge regression BLUP (rrBLUP) models
without or with imputed population structure
as a function of five genotype missing data
thresholds, relative to predictions in Lodi for
Perugia (Lodi > Perugia) and vice versa
(Perugia > Lodi) of a farmer acceptability
score (FaSc) and grain yield (GrY). Results
averaged across three pea recombinant inbred
line populations (each including 100–104
lines) and 50 repetitions of 10-fold stratified
cross validations per individual analysis.

Table 5
Correlation of pea line breeding values for each of eight selection criteria with
pea grain yield in independent experiments.

Selection criteriona Average of 4
experimentsb

One experimentc

Farmer selection index 0.458d 0.268d

Breeder selection index 0.370d 0.242d

Farmer + breeder selection indexes 0.418d 0.257d

Grain yield 0.348d 0.328d

Farmer acceptability score 0.645 0.409
Breeder acceptability score 0.479 0.342d

Genomic selection for grain yield 0.679 0.453
Genomic selection for farmer

acceptability score
0.769 0.564

a Using data averaged across the organically-managed Experiments 1 and 2
described in Table 2.

b Organically-managed Experiments 4–7 described in Table 2. Test lines are
31.

c Conventionally-managed Experiments 3 described in Table 2. Results
averaged across three recombinant inbred line populations, each including
100–104 lines.

d Correlation coefficient significantly lower (P < 0.05) than that relative to
genomic selection for farmer acceptability score.
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4.2. Phenotypic selection criteria

Climatic data, particularly those for Lodi, confirmed the remarkable
year-to-year variation for extent of winter cold stress that justified the
breeding of pea for wide adaptation across geographically-contrasting
Italian locations (Annicchiarico and Iannucci, 2008). Adopting just one
mild-winter cropping year for multi-site selection was a limitation of
this study, but the nearly identical importance attributed by breeders
and farmers to cold tolerance (Table 1) suggests that a meaningful as-
sessment of this trait in a colder selection year would have hardly af-
fected the comparison of farmer-based vs. breeder-based selection in-
dexes. Despite the lack of cold tolerance selection, the selected
germplasm displayed a remarkable yield progress not only over the
parent cultivars but also over the set of elite commercial cultivars across
partly cold-prone independent environments. The matching of selection
and target environments with respect to organic crop management
conditions probably contributed to this result.

This study indicated that PPB can be useful also for a large-scale,
market-oriented breeding programme performed on an inbred crop in a
country with developed agriculture. One result supporting this con-
clusion was the distinct superiority of the farmer selection index cri-
terion over the breeder index-based criterion both in terms of selection
efficiency (+23% based on yield gains over elite commercial cultivars)
and in terms of farmer’s acceptability of the selected material. A second
supporting result was the greater correlation with grain yield in in-
dependent environments of breeding values issued by the farmer se-
lection index or the farmer acceptability score relative to the corre-
sponding breeder-based criteria. These results emerged for organically-
managed environments and, albeit to a somewhat lower extent, also for
a conventionally-managed environment. Recalling that the accept-
ability score was the trait with highest impact on the selection index of
farmers or breeders, a reason contributing to these results was the
somewhat greater ability of the farmer acceptability score relative to
the breeder score to predict genotype yields in selection and in in-
dependent environments. Actually, a simple selection criterion such as
the farmer acceptability score performed quite well in terms of yield
gains or correlation of breeding values with grain yields in independent
organically- or conventionally-managed environments. While earlier
studies usually contemplated farmer acceptability scores with three
(e.g., Virk et al., 2003; Asfaw et al., 2012) to five levels (e.g., Ceccarelli
and Grando, 2007), we proposed a nine-level score which, on the
proposal of farmers and breeders to use also half values, became a 17-
level score - a complexity level that may have contributed to its high
sensitivity and selection efficiency. The smaller variation in genotype
acceptability score values issued by farmers relative to breeders may be
due to greater prudential attitude by farmers (as reported by Virk et al.,
2003) and/or the fact that the farmer score assigned to each plot was
actually the average of three acceptability scores expressed by farmers
with possibly different views of the ideal plant type (in the presence of
fairly large variation among farmers in this respect: Fig. 1).

The grain yield-based selection criterion, which is the most wide-
spread phenotypic criterion in conventional breeding programmes,
performed nearly as well as the farmer index-based criterion, while
implying a lower cost for trait recording. In general, a comparison of
index-based vs. yield-based selections merely in terms of yield progress
is not completely fair, because index-based selections accounted for
other traits whose importance may not emerge from the yield responses
of the selected material in the test environments (or the yield responses
at all). For example, the high priority attributed by breeders to toler-
ance to lodging did result in greater tolerance of breeder index-based
selections relative to yield-based ones. In the low-cost scenario of se-
lection based on a single trait, a cost-efficient PPB alternative to yield-
based selection proved to be the selection based on the farmer ac-
ceptability score, which performed comparably in terms of yield gains
under organic or conventional farming and somewhat better on the
basis of correlations of its line breeding values with line yields in

independent environments - while seemingly implying lower costs. A
further advantage of this farmer-based criterion over grain yield was its
lower susceptibility to GEI as indicated by results for the two selection
environments, which was not quite expected considering that different
scoring farmers in the two environments may have contributed to GEI
for this selection trait. Low GEI can be particularly important for a
selection criterion recorded in very few test environments.

4.3. Genomic selection criteria

This study confirmed for both target traits the similar predictive
ability of BL and rrBLUP models, the negligible increase of predictive
ability arising from imputing RIL structure information, and the peak of
predictive ability in the range of 20–40 % maximum missing rate, that
were reported for pea grain yield in Annicchiarico et al. (2017a). A peak
of predictive ability is expected from the trade-off between increased
information (more markers) and increased noise (higher imputation
errors) arising from increasing missing rate.

Annicchiarico et al. (2017a) reported high GS predictive ability for
pea grain yield, which averaged 0.72 across three RIL populations,
under conditions of severe terminal drought in a phenotyping platform.
Those conditions implied ecologically simple adaptive responses, which
relied largely on drought stress escape via early onset of flowering. In
addition, their assessment of GS predictions was based on intra-ex-
periment cross-validations rather than the current, more conservative
criterion based on cross-validations across independent test sites. The
high predictive accuracy of GS for grain yield observed in this study
highlights the interest of GS also for pea yield improvement across
cropping environments, such as those of Northern and Central Italy,
that are less unfavourable climatically and ecologically more complex
in terms of genotype adaptive responses.

This study provided the first attempt to model genomically a com-
plex trait such as farmer’s acceptability. Our results were beyond ex-
pectation in this respect, indicating greater predictive accuracy for this
trait than grain yield. Furthermore, GS for higher farmer acceptability
score ranked consistently first in our preliminary comparison of eight
genome-enabled or phenotypic selection criteria based on correlations
of line breeding values with grain yields in independent environments.
Interestingly, such correlations were higher for genome-modelled than
phenotypically-estimated breeding values, for both the farmer accept-
ability score and grain yield. A study of wheat grain yield (Michel et al.,
2017) reported already the higher correlation with phenotypic data in
independent environments of genome-modelled yield data relative to
the phenotypic data used to construct the genomic model. A possible
reason for that could be the ability of the genome-based modelling
process to reduce the noise of trait data - in a similar manner as done,
for example, by proper modelling of GEI effects for yield data (Gauch
et al., 2008).

High GS predictive ability was reported for a few pea traits of
possible interest to farmers, such as onset of flowering and individual
seed weight (Burstin et al., 2015) and biomass and straw production
(Annicchiarico et al., 2018).

5. Conclusions

One key conclusion from this study is the high value of PPB for the
market-oriented breeding of an inbred crop targeted to a country with
developed agriculture. The adoption of PPB across geographically-
contrasting researcher-managed selection environments based on a
farmer selection index or a farmer acceptability score out-performed
index-based or acceptability score-based selection by breeders in terms
of yield progress and farmer’s acceptability of novel cultivars.
Phenotypic selection based on the farmer acceptability score proved to
be a cost-efficient alternative to conventional grain yield-based selec-
tion, and may prove particularly valuable for early stages of field-based
selection, in which grain yield evaluation is hindered by small plot size.
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A second important conclusion from this study is the opportunity to
support and complement PPB by genome-enabled selection for pea
breeding value as expressed by farmer’s acceptability and crop grain
yield. In particular, GS for higher farmer’s acceptability (as established
from prior multi-environment farmer data) may be the most cost-effi-
cient criterion for pea yield improvement targeted to Italian organic
systems, although this finding requires confirmation, e.g., from assess-
ments based on actual yield gains. GS for the farmer acceptability score
could be particularly valuable for preliminary selection within very
large genotype sets, whose field-based evaluation would be prevented
by its high cost.

While we envisaged pure line selection from RIL population mate-
rial, our conclusions may hold true for other breeding schemes, e.g., the
evaluation of segregating lines within a bulk-pedigree method
(Witcombe et al., 1996), or that of pure lines extracted from evolu-
tionary populations (Murphy et al., 2005). More generally, the current
success of PPB approaches highlights the high importance of knowledge
exchange and mutual learning between researchers and farmers also in
the context of plant breeding and in countries with developed agri-
culture. Also, the integration of farmers in selection programmes can be
a component of a system-based breeding approach that favours the
attainment of various agro-ecological and socio-economic targets
(Lammerts van Bueren et al., 2018). The described PPB effort has
produced one variety proposed for registration.
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