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Abstract

Background: Genomic selection based on genotyping-by-sequencing (GBS) data could accelerate alfalfa yield
gains, if it displayed moderate ability to predict parent breeding values. Its interest would be enhanced by
predicting ability also for germplasm/reference populations other than those for which it was defined. Predicting
accuracy may be influenced by statistical models, SNP calling procedures and missing data imputation strategies.

Results: Landrace and variety material from two genetically-contrasting reference populations, i.e., 124 elite genotypes
adapted to the Po Valley (sub-continental climate; PV population) and 154 genotypes adapted to Mediterranean-climate
environments (Me population), were genotyped by GBS and phenotyped in separate environments for dry matter yield
of their dense-planted half-sib progenies. Both populations showed no sub-population genetic structure. Predictive
accuracy was higher by joint rather than separate SNP calling for the two data sets, and using random forest imputation
of missing data. Highest accuracy was obtained using Support Vector Regression (SVR) for PV, and Ridge Regression
BLUP and SVR for Me germplasm. Bayesian methods (Bayes A, Bayes B and Bayesian Lasso) tended to be less accurate.
Random Forest Regression was the least accurate model. Accuracy attained about 0.35 for Me in the range of 0.30-0.50
missing data, and 0.32 for PV at 0.50 missing data, using at least 10,000 SNP markers. Cross-population predictions
based on a smaller subset of common SNPs implied a relative loss of accuracy of about 25 % for Me and 30 % for PV.
Genome-wide association analyses based on large subsets of M. truncatula-aligned markers revealed many SNPs
with modest association with yield, and some genome areas hosting putative QTLs. A comparison of genomic vs.
conventional selection for parent breeding value assuming 1-year vs. 5-year selection cycles, respectively, indicated over
three-fold greater predicted yield gain per unit time for genomic selection.

Conclusions: Genomic selection for alfalfa yield is promising, based on its moderate prediction accuracy, moderate
value of cross-population predictions, and lack of sub-population structure. There is limited scope for searching
individual QTLs with overwhelming effect on yield. Some of our results can contribute to better design of genomic
selection experiments for alfalfa and other crops with similar mating systems.
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Background
Crop yield, which generally is the main objective of
breeding programs, has been improved essentially by
phenotypic selection, owing to inability of marker devel-
opment to ensure sufficient genome coverage for this
complex trait. This holds true also for alfalfa (Medicago

sativa L. subsp. sativa), which is the most grown peren-
nial forage legume globally [1] with potential interest
also as a dual-purpose crop for bioenergy and protein
feed [2]. Yield breeding progress for this crop has been
particularly slow compared with other major field crops,
owing to low breeding investment, long selection cycles,
high material evaluation cost, impossibility to capitalize
on harvest index, low narrow-sense heritability (hN

2)
partly due to a large component of non-additive genetic
variance, outbreeding mating system associated with
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severe inbreeding depression, and high genotype-
environment interaction [3, 4]. Published estimates of
hN

2 for alfalfa biomass yield ranged from 0.15 to 0.30,
including the value of 0.21 observed for one set of Italian
alfalfa genotypes that was also used for the current study
[1]. Such low hN

2 values, and the long and expensive
selection cycles, emphasize the practical importance of
exploring selection procedures for higher biomass yield
that use marker information as a partial substitute for
field-based selection [5].
Early research work aimed to identify molecular

markers strongly linked to quantitative trait loci (QTL)
for alfalfa forage yield could rely on about 150–200
RFLP, AFLP, SSR or RAPD markers [6–9]. Of necessity
with so few markers, QTL discovery focused on a
limited genetic base represented by F1 progenies of a bi-
parental population, which, along with the expected
absence of individual markers with high yield effect,
limited the practicality of a marker-assisted selection
program. The availability of large numbers of SNP which
could be turned into markers [10, 11] has enhanced the
opportunities for marker-assisted selection, allowing for
exploring wider genetic bases through association map-
ping [12, 13]. The development of an alfalfa Illumina
Infinium SNP array containing about 10,000 SNP
markers has provided a high-throughput platform [14].
Such high marker number may also allow for sufficient
genome saturation for genomic selection, by which phe-
notyping and genotyping data of a genotype sample
representing a target genetic base (reference population)
are combined into a model that estimates breeding
values for future plant selection [15, 16]. Simulation and
empirical studies proved that genomic selection is super-
ior to conventional marker-assisted selection based on
limited marker numbers in prediction of breeding values
for complex polygenic traits, such as crop yield [17, 18].
The recent development of methods to genotype

directly from sequence data, such as genotyping-by-
sequencing (GBS) [19], can decrease the cost of marker-
based selection for production traits compared to SNP
array platforms. A GBS-based high-density linkage map
for tetraploid alfalfa including over 3500 SNP markers
has been constructed [20]. However, GBS commonly
generates large amounts of missing data that must be
imputed before fitting a genomic prediction model.
Imputation method [21] and the genomic selection
model [16] may influence prediction accuracy, i.e., the
correlation between predicted and true breeding values.
Genomic prediction accuracy and narrow-sense herit-

ability of the yield trait are crucial genetic parameters
for the comparison of selection strategies in terms of
expected yield gain, for the popular scheme of parent
selection based on half-sib progeny responses [4]. Gen-
omic selection models with accuracies as high as 0.66

for cross-validation within a given location and cycle
and 0.40 for predicting genotype yields in a following
cycle were obtained for parent material phenotyped and
selected as individual cloned plant [22]. However, the
ideal phenotypic data on which to base a genomic selec-
tion model for perennial forage crops would be sward
plot yield of half-sib progenies rather than cloned space-
planted parents, to closely represent actual production
environments and to focus on additive genetic variance,
the relevant variance for synthetic variety breeding [4].
Thus, successful application of genomic prediction
models to a half-sib breeding program would provide
better evidence that GS could accelerate yield gain in al-
falfa. Also, understanding how well genomic selection
models can predict yield in germplasm/reference popu-
lations other than those for which they were defined
would help clarify the cost of incorporating GS models
into a breeding program [4].
This study provides an unprecedented, thorough as-

sessment of the potential value of genomic selection for
assessing alfalfa parent breeding values for biomass yield
based on GBS data. Results are provided for two refer-
ence populations that represent quite distinct genetic
bases, namely, one assembled from elite landrace and
variety germplasm adapted to the sub-continental cli-
mate conditions of Northern Italy [23], and the other
constituted by repeated intercrossing of genotypes from
three populations that were top-performing across
Mediterranean-climate environments of the Western
Mediterranean basin [24]. These populations differed
also for conditions of biomass yield phenotyping. Gen-
omic selection models for parent selection were con-
structed from phenotypic data of their dense-planted
half-sib progenies, assessing their selection accuracy for
different SNP calling procedures, strategies and algo-
rithms for missing data imputation, and prediction
models. In addition, we performed a genome-wide asso-
ciation analysis for a subset of M. truncatula-aligned
SNP markers, and verified the cross-population accuracy
of the genomic selection models.

Results
Phenotypic variation
Half-sib progenies differed for total dry matter (DM) yield
in both populations (P < 0.001). Best linear unbiased pre-
dictors (BLUP) values ranged from 19.8 to 28.1 t/ha for
the 124 progenies of parent genotypes from the reference
population PV originated in the Po Valley, and from 6.4 to
8.8 t/ha for the 154 progenies of parent material from the
population Me adapted to Mediterranean-climate envi-
ronments. The difference in yield levels between popula-
tions reflected the different duration of their respective
phenotyping experiments (3 years for PV vs. 1 year for
Me). In both populations, the distribution of parent
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breeding values (as inferred from yield values of their half-
sib progenies) visually approached the expected normal
distribution [see Additional file 1: Figure S1].

GBS data
The total number of polymorphic SNPs without regard
to the amount of missing data after applying read-depth
filtering amounted to 68,972 for PV and 77,610 for Me.
Obviously, increasingly stricter thresholds for the
number of genotypes with missing data resulted in pro-
gressively fewer SNPs available for genomic selection
(Fig. 1). SNP number, however, remained relatively high
even at a fairly stringent missing data thresholds, e.g.,
over 11,000 for the population Me and 7000 for PV at
the 0.20 threshold. In general, marker counts for popula-
tion PV were lower than those for Me, probably re-
flecting the more selective adapter used for GBS library
construction of this population. Marker counts for each
population were very similar between separate and joint
SNP calling, with just a slight advantage in marker
number for separate SNP calling in the Me population
(Fig. 1).

Population structure
In both populations, the substantially flat response of
the log likelihood values of posterior probability for
increasing numbers of possible sub-populations indi-
cated the absence of population structure (Fig. 2). This
result was confirmed by results of Evanno’s criterion, as
well as by the lack of genotype groups with consistently
greater genetic similarity in the kinship matrix analysis
[see Additional file 2: Figure S2]. These findings supported

the omission of a parameter for population structure in
genomic selection models of both populations.

SNP calling procedures and imputation method in
genomic selection models
SNP calling for PV and Me was envisaged either separ-
ately (data sets PV_Sep and Me_Sep), or jointly followed
by application of missing data thresholds to separate
populations (data sets PV_Joint and Me_Joint). SNP call-
ing procedures were assessed with reference to Support
Vector Regression with linear kernel (SVR-lin) and Ridge
Regression BLUP, since these models displayed higher
predictive accuracies than other genomic selection
models in following analyses. Prediction accuracy values
were obtained for the two data sets and a combination
of four imputation methods, namely, Mean imputation
(MNI), Singular value decomposition imputation (SVDI),
Random forest imputation (RFI) and Localized haplotype
clustering imputation (LHCI). The results highlighted
the merit of RFI for both data sets, both using SVR-lin
(Fig. 3) and Ridge Regression BLUP [see Additional
file 3: Figure S3]. This method performed slightly better
than, or comparably to, any other method, with the excep-
tion of the data set PV_Sep for the missing data thresholds
0.20 and 0.30 (Fig. 3). As expected, the differences in ac-
curacy between imputation algorithms increased with re-
laxed thresholds for missing genotype data (implying
greater amounts of estimated missing data) (Fig. 3).
Results in Fig. 3 also revealed the trend towards

greater accuracy of data sets of the two populations that
underwent joint SNP calling (PV_Joint, Me_Joint), com-
pared with data sets subjected to separate SNP calling
(PV_Sep, Me_Sep). Averaged across the six missing data
thresholds and RFI, the accuracy gain obtained by joint

Fig. 1 Number of SNP markers for different genotype missing data
thresholds and SNP calling strategies. Results for 124 genotypes of the
Po Valley population (PV) and 154 genotypes of the Mediterranean
population (Me) subjected to separate SNP calling (data sets PV_Sep
and Me_Sep), or joint SNP calling with subsequent application of
missing data thresholds to separate populations (PV_Joint and
Me_Joint) or joint populations (COMMON)

Fig. 2 STRUCTURE analysis of sub-populations. Log likelihood values of
posterior probability as a function of the number of sub-populations,
separately for the Po Valley (PV) and the Mediterranean
(Me) populations
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SNP calling was 10.1 and 6.4 % for PV and Me popula-
tions, respectively.
In general, the prediction accuracy of parent breeding

values was higher for Me germplasm than PV material.
With reference to the preferable configuration of joint
SNP calling and RFI using the SVR-lin model, the ac-
curacy response as a function of genotype missing data
thresholds was roughly flat for the Me population (with
values around 0.35 in the range of 0.30–0.50 missing
data), while showing a peak of 0.32 accuracy at 0.50
missing data for PV germplasm (Fig. 3). Such top-
performing genomic selection models included at least
10,000 SNP markers (Fig. 1). The list of detected SNPs
and their identifying flanking sequences are provided in
[Additional file 4] and [Additional file 5].

Comparison of genomic selection models
Support Vector Regression using Linear and Gaussian
Kernel, Ridge regression BLUP, Random Forest Regression
and three Bayesian models, namely, Bayes A, Bayes B and
Bayesian Lasso, were compared in terms of predictive ac-
curacy for the preferable configuration of joint SNP calling
and RFI. We found only limited differences between
methods on Me germplasm (Fig. 4), where only Random
Forest Regression stood out as the worst-performing

candidate. On PV germplasm, however, Support Vector
models outperformed all other models, with a constant
advantage of about 0.05–0.07 on the third best-
performing model. In general, the two Support Vector
kernels performed comparably and with no clear dis-
cernible trend in accuracy. However, SVR-lin resulted in
shorter computation times.
Among Bayesian methods, Bayesian Lasso tended

towards greater accuracy than Bayes A and B for PV ma-
terial, whereas the three methods performed comparably
for Me germplasm (Fig. 4). On average, Ridge Regression
BLUP slightly outperformed Bayesian methods, a trend
confirmed also in data sets that underwent separate SNP
calling (PV_Sep and Me_Sep) (data not reported).

Genomic selection: cross-population predictions
This assessment was carried out using the COMMON
data set, which included only the SNPs that satisfied fil-
tering criteria simultaneously for PV_Joint and Me_Joint
data sets. This data set exhibited relatively small SNP
numbers (Fig. 1), which averaged 37 % of those featuring
the smaller of the joint data sets (PV_Joint) across geno-
type missing data thresholds.
The accuracies of cross-population predictions by

SVR-lin and Ridge Regression BLUP models were

Fig. 3 Prediction accuracy for different genotype missing data imputation methods, SNP calling strategies and missing data thresholds. Results
for four imputation methods (MNI, Mean imputation; SVDI, Singular value decomposition imputation; RFI, Random forest imputation; LHCI, Localized
haplotype clustering imputation) applied to Po Valley (PV) and Mediterranean (Me) data sets subjected to separate SNP calling (PV_Sep and Me_Sep)
or joint SNP calling (PV_Joint and Me_Joint), using Support Vector Regression with linear kernel
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compared with intra-population predictions by the same
models, using same markers (COMMON data set). Fig. 5
also includes, as a reference, intra-population prediction
accuracies based on all available markers (PV_Joint and
Me_Joint data sets). The advantage of using the
complete marker data set was high for PV germplasm

and only marginal for the Me one, especially considering
the much higher number of SNPs available.
In both populations, cross-population prediction ac-

curacies were definitely lower than intra-population ones
based on same markers (Fig. 5). However, the relative
disadvantage of cross-population prediction decreased

Fig. 4 Prediction accuracy of four genomic selection models at different genotype missing data thresholds. Results for Support Vector Regression
with linear (SVR-lin) and gaussian (SVR-gau) kernel, Random Forest Regression (RFR), Ridge Regression BLUP (rrBLUP), Bayes A, Bayes B and Bayesian
Lasso models applied to Po Valley (PV_Joint) and Mediterranean (Me_Joint) data sets subjected to joint SNP (random forest imputation of
missing data)

PV - rrBLUP Me - rrBLUP

PV - SVR-lin ME - SVR-lin

Fig. 5 Accuracy of genomic selection for intra-population and cross-population prediction strategies at different genotype missing data thresholds.
Intra-population prediction using all markers subjected to joint SNP calling (PV_Joint and Me_Joint data sets) or only markers satisfying the common
filtering criteria (COMMON data set), and cross-population predictions using the COMMON data set, for Po Valley (PV) and Mediterranean (Me)
populations, using Support Vector Regression with linear kernel or Ridge Regression BLUP (random forest imputation of missing data)
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for more relaxed thresholds of genotype missing data
and reached a minimum at 50 % missing data, where the
relative loss of accuracy was comparable for both
models. This loss amounted to about 28 and 25 % for
PV and Me germplasm, respectively, using SVR-lin, and
30 and 25 % for PV and Me germplasm, respectively,
using Ridge Regression BLUP.

Genome-wide association analysis
We selected for M. truncatula alignment the SNP
markers of PV_Joint and Me_Joint data sets that tended
to maximize intra-population prediction accuracy,
namely, those of 50 % missing data threshold for PV and
30 % threshold for Me (both imputed with RFI). Non-
aligned markers (placed on the fictitious chromosome
N) were 28.1 % for PV and 24.5 % for Me populations.
The aligned markers were 7544 for PV and 8648 for Me
populations, resulting in an average physical distance
between SNPs of 40 Kbp for PV and 34.5 Kbp for Me.
As expected for a complex traits such as crop yield,

we found a high number of SNPs that tended towards a
modest association with the trait (Fig. 6). The simul-
taneous inspection of the Manhattan plots for the two
populations suggested some consistency of genome areas
hosting putative QTLs, such as those around the end of
the chromosomes 1 and 6, or an area in the last third of
chromosome 8 (Fig. 6).

Discussion
The phenotyping of PV material, which extended over
3 years, was consistent with the actual alfalfa cycle
duration in Northern Italy. Parent breeding values based
on 3-year DM yield were the result of intrinsic yielding
ability as expressed by short-term DM yield, and persist-
ence. The latter trait may depend on the plant’s ability to
accumulate assimilates in the root for further regrowth
under moisture-favorable conditions and to survive
across stress periods by various physiological mecha-
nisms under unfavorable conditions [25]. Both compo-
nents of persistence were likely to be relevant under the
moderate-drought stress phenotyping conditions that
featured PV material. Hence, PV parent breeding value
was based on a more complex and partly different DM
yield trait relative to Me parent breeding value, which
reflected only intrinsic yielding ability as revealed in the
short term. The somewhat lower prediction accuracy ob-
served for biomass yield of PV material relative to Me
germplasm (about 0.32 vs. 0.35 for best-performing
models) can be the result of greater complexity of its
yield trait (as determined by persistence besides intrinsic
yield potential), smaller genotype sample or lower num-
ber of SNPs that were available for this population.
SNP marker number made available by GBS in these

data sets was in the range of 7000-11,000 for reasonably

low rates of missing data. These values compare favor-
ably with an earlier assessment of GBS in alfalfa [20],
while approaching the SNP numbers obtainable by
Illumina Infinium SNP array [14]. Compared with GBS,
Infinium array has a higher cost per data point but also
necessarily expensive genotyping experiments, owing to
its need for large numbers of samples to be analyzed
simultaneously. Our GBS-generated marker numbers
might roughly suffice for genome exploration of
broadly-based alfalfa populations, considering that at
least 1000 SNP markers were estimated as necessary for
a narrow-based population [13]. However, suboptimal SNP
numbers might occur when attempting cross-population
predictions, as we observed with the COMMON data set.
On average, the original GBS protocol by [19] as ap-

plied to Me material resulted in greater SNP number
than the modified protocol applied to PV germplasm.
Without ruling out the effect of genetic differences be-
tween populations, this result suggests that greater amp-
lification of fewer target sites was not a useful strategy
to limit the amount of missing data resulting from insuf-
ficient read depth. In contrast, this strategy showed
some merit for soybean [26]. The consistent use of the
same restriction enzyme limited the occurrence of dis-
tinct SNP markers for the two data sets. Indeed, the
joint SNP calling in the two sets produced a sizable
increase of genomic prediction accuracy, suggesting
some advantage of the pooled information from the two
data sets to improve the SNP calling quality for each
data set. Joint SNP calling is operationally necessary to
ensure the same SNP naming across different data sets
in alfalfa and other crops that lack a stable reference
genome and a public repository of unique SNP identi-
fiers. The different GBS protocol, and genetic differences
between populations, may account for the fact that the
COMMON data set contained only a minority of the
total SNP markers from Me_Joint and PV_Joint data
sets, instead of approaching the SNP number of the
more restrictive PV_Joint set.
Prediction accuracy was also affected by missing data

imputation method, for which RFI emerged as a solid
choice for the current unordered SNP data, as well as by
the adopted statistical model for genomic selection. The
effect of allowed missing data thresholds on prediction
accuracy, which mostly displayed an accuracy peak in
the range of 30–50 %, was consistent with the expected
trade-off between increased information (more markers)
and increased noise (higher imputation errors) arising
from increasing thresholds.
The good performance of SVR models in this study

agrees with the theoretical expectation of high accuracy
for these methods when applied to traits that involve
many QTLs with small individual effects [27, 28]. This
was particularly true for PV germplasm, where genome-
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enabled predictions were more difficult than for Me
because of various factors (greater complexity of the
yield trait; less test genotypes; less markers), possibly
because of the recognized value of SVR in high-noise

conditions [29]. SVR and Ridge Regression BLUP
performed were similarly for Me germplasm. The good
performance of the latter method agrees with theoretical
expectations [15, 16].

Fig. 6 Association (Manhattan plot) of M. truncatula-aligned SNP markers with total dry matter yield. Results for Po Valley (PV) and Mediterranean
(Me) populations
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The complexity of the alfalfa biomass yield trait was
confirmed by the high number of putative QTLs that
emerged for both data sets from genome-wide association
analysis. We believe that mapping individual QTLs for
yield holds lower practical interest than genomic selection,
for yield improvement programs of alfalfa and probably
other crops.
The observed lack of sub-population structure facili-

tates the application of genomic selection by allowing
for the adoption of simple genomic selection models.
Lack of structure was purposefully searched for in the
development of the Me, through repeated intercrossing
of progenies generated by intercrossing genotypes from
different populations. For population PV, whose geno-
type sample derived from several landraces and varieties
from Northern Italy, lack of sub-population structure
was not quite expected. A reason for this finding could
be much higher intra-population variation relative to
inter-population variation, which emerged for PV mater-
ial from the study of several morphophysiological traits
[23] and recent studies of SSR- and SNP-based genetic
diversity (Annicchiarico et al. unpublished data). The
population used by [22] in their prediction experiment
was a strain cross of three cultivars subsequently inter-
crossed for two generations. It likewise had no sub-
population structure. The pattern of these three very dif-
ferent populations suggests that application of marker
prediction methods will not be limited within breeding
programs by population structure.
The current predictions of parent breeding values

proved much less accurate than predictions of alfalfa yield
responses of cloned parents in an earlier study [22], likely
because of the large extent of non-additive genetic vari-
ation reported consistently for this trait in various genetic
studies [4] including one for the population PV [1]. Hence,
focusing on parent breeding values (i.e., those of relevance
in synthetic variety breeding) is of paramount importance
for a realistic assessment of genomic selection in alfalfa
and other crops with a similar mating system. It should be
noted, however, that even a genomic prediction accuracy
of breeding values (rA) around 0.32 (as achieved for PV
material) can be promising for genomic selection. Consid-
ering the estimated narrow-sense heritability (hN

2) of 0.21
reported for the same set of PV parent plants [1], selection
cycles of 1 year for genomic selection (including genotyp-
ing plus polycrossing of selected genotypes) and 5 years
for conventional parent selection based on half-sib pro-
geny test (year 1, half-sib seed production from poly-
crossed replicated candidate parents; years 2–4, half-sib
biomass yield evaluation; year 5, polycrossing of selected
genotypes) and same selection intensity for both selection
strategies, the comparison of genomic vs. conventional se-
lection in terms of predicted yield gain per unit time re-
duces, according to formulae in [4], to rA vs. (hN/5). This

would indicate over three-fold greater efficiency for gen-
omic selection [0.32 vs. (0.46/5)], assuming no degradation
in the predictive power of the model across a few selection
cycles (which may substantially hold, considering the fairly
slow change in marker frequency expected for so high a
number of loci subjected to selection). In addition, gen-
omic selection is likely to allow for higher numbers of
evaluated candidate parents (hence, higher selection in-
tensity) than conventional selection, for same evaluation
costs. GE interaction effects are bound to decrease
genomic prediction accuracies [16] and yield gains over a
target region, but this is applies as well to conventional
selection, depending in all cases on the consistency of
phenotyping or selection conditions with those prevailing
in cropping environments [4]. Models developed across
two locations actually had slightly higher accuracies for
predicting yield of individual genotypes in a subsequent
generation than models from either location independ-
ently [22], demonstrating that if extreme GE interactions
are not present, broader inference across locations is
desirable. For PV germplasm, the moderate summer
drought stress conditions adopted for phenotyping and
assessment of rA and hN parameters were suitable for
minimizing GE interactions across Northern Italy [30].
Since a model’s prediction accuracy evaluated by cross-
validations within the training population (as done here)
may overestimate the model accuracy for selection within
other genotypes of the same reference populations, future
research work will compare genomic vs. phenotypic
selection on the basis of actual yield gains obtained from
selection within an independent genotype sample of the
PV population. Other work will assess the potential of
genomic selection for predicting breeding values of Me
germplasm across a range of target environments, includ-
ing some with severe drought or salinity stress.
That we observed only moderate loss of accuracy for

cross-population predictions relative to within-population
predictions is fairly surprising, especially considering the
contrasting origin and the different duration and environ-
mental conditions for biomass yield assessment of the two
populations. Quite poor cross-population predictions were
reported for wheat [31], in the presence of partly related
populations evaluated under the same phenotyping condi-
tions. The current result was probably favored by the high
rate of within-population genetic variation that is typical
of alfalfa, to which the development of broadly-based ref-
erence populations further contributed. It provides further
support for the introduction of genomic selection in alfalfa
breeding programs, whose selection is frequently carried
out simultaneously on different germplasm pools.

Conclusions
Our results indicate that genomic selection for alfalfa bio-
mass yield is promising, based on its moderate prediction
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accuracy, moderate value of cross-population predictions,
and lack of sub-population genetic structure. Genome-
wide association results confirmed the complexity of the
yield trait and the limited scope for searching individual
QTLs with overwhelming effect on it. Some of our results
concerning GBS procedures, SNP calling strategies,
missing data imputation methods and statistical models
for genomic selection can contribute to better design of
genomic selection experiments for alfalfa and other crops
with similar mating systems and commercial cultivar
targets.

Methods
Reference population PV (Po Valley): composition and
phenotyping
This reference population included elite germplasm
from the Po Valley, Italy and was represented by a
sample of 125 parental genotypes whose selection and
phenotyping of their half-sib progenies for DM yield
were described previously [1]. In brief, PV genotypes
were chosen by stratified mass selection for DM yield
over three harvests among 4480 densely planted geno-
types grown in Lodi (Northern Italy) under field con-
ditions in 2002 and 2003. The initial set of 4480
genotypes, whose origin and phenotypic variation are
described in [23], represented well the germplasm from
Northern Italy, including fixed amounts of randomly
chosen genotypes from eleven farm landraces collected
across the entire region and seven elite varieties. These
populations had fall dormancy class 5 or 6, except for a
few with dormancy 4 or 7. Half-sib progeny seed was
obtained in summer 2005 by polycrossing the selected
cloned genotypes in two large isolation cages, each in-
cluding three complete crossing blocks with different
genotype randomizations. Pollination in this and follow-
ing intercrossing work was carried out by placing one
micro-hive of bumblebees (Bombus terrestris L.) in each
cage. We pooled the seed harvested from the six clones
of each parent.
Half-sib progenies of the 125 genotypes were sown in

jiffy pots and transplanted in November 2005 in a field
experiment in Lodi that was designed as a randomized
complete block with two replications. Each plot included
21 plants arranged in seven rows of three plants each,
spacing plants at 0.12 m across and within rows, and
using the two edge rows as border plants. Total DM
yield was recorded across 12 harvests: five in 2006 and
2007 and two in spring 2008. The experiment received
two irrigations of 30 mm each in 2006 and one irrigation
of 40 mm in 2007, imposing a moderate level of summer
drought stress that is consistent with the objective of
selecting material widely adapted to Northern Italy [30].
On average, the experiment received 454 mm of water
(rainfall plus irrigation) in the period March-October

(when plant growth is substantial). DM yield values for
genomic selection and genome-wide association studies
were adjusted using BLUP computed from half-sib pro-
geny mean values, as described in [32], i.e., by shrinking
progeny main effects through multiplication by broad-
sense heritability on a progeny mean basis (hB

2) of the
half-sib material estimated as:

hB
2 ¼ Shs

2= Shs
2 þ Se

2=r
� �

where Shs
2 and Se

2 are estimates of variance components
for half-sib progeny and experiment error variation, and
r is the number of experiment replications. One of the
125 parent genotypes was eliminated from genomic
selection analyses, owing to poor quality (as number of
reads) of its sequencing data.

Reference population Me (Mediterranean): composition
and phenotyping
This population represented elite germplasm adapted to
Mediterranean-climate environments and included 154
parental genotypes that derived from two cycles of free
intercrossing among three outstanding populations in a
previous multi-environment study [24]. These popula-
tions, whose fall dormany class ranged from 7 to 10, were:
(i) the drought-tolerant Sardinian landrace Mamuntanas;
(ii) the salt-tolerant Moroccan landrace Erfoud 1; (iii) the
Australian variety SARDI 10, widely adapted across
moisture-favorable and drought-prone sites. The first
intercrossing generation took place in 2009 and included
210 genotypes, 70 randomly chosen from each population.
One seed per parent plant was harvested to establish the
second intercrossing generation in 2010. One seed from
each of 154 randomly-chosen parent plants on this
generation was harvested, to establish the parent sample.
Half-sib progeny seed of these 154 genotypes was ob-
tained in 2011 and 2012 from three large isolation cages,
each including three complete crossing blocks of ran-
domized genotypes, pooling seed harvested over the nine
clones of each parent.
Half-sib progenies of the 154 genotypes were sown in

jiffy pots and then transplanted in mid-April 2012 in a
field experiment in Lodi that was designed as an alpha
lattice with three replications. Each plot included 36
plants arranged in nine rows of four plants each, spacing
plants at 0.080 m across rows and 0.075 m within rows,
and using the two edge rows as border plants. Pheno-
typing of Me focused on short-term DM yield in
moisture-favorable, irrigated conditions. The experiment
received 750 mm of water over the period March-
October, assessing plot DM yields four times from June
to October 2012. DM yield values were adjusted using
BLUP as described for population PV.

Annicchiarico et al. BMC Genomics  (2015) 16:1020 Page 9 of 13



DNA isolation, GBS library construction and sequencing
DNA was isolated from fresh leaf tissues by the Wizard®
Genomic DNA Purification Kit (Promega, A1125) and
quantified with a Quant-iT PicoGreen dsDNA assay kit
(Life Technologies, P7589). One library was constructed
for each population, using the protocol by [19] with
modifications. Briefly, 100 ng of each DNA was digested
with ApeKI (NEB, R0643L) and then ligated to a unique
barcoded adapter and a common adapter. Equal volume
of the ligated product was pooled and cleaned up with
QIAquick PCR purification kit (QIAGEN, 28104) for
PCR amplification. In PCR, 50 ng template DNA was
mixed with two primers and Taq polymerases in a 50 ul
total volume. For the reference population Me, 5 nmoles
each of the primers and NEB 2X Taq Master Mix (NEB
Cat # M0270S) were included in the PCR reaction
according to [19] original protocol. Amplification was
carried out on a thermocycler for 18 cycles with 10 s of
denaturation at 98 °C, followed by 30 s of annealing at
65 °C, and finally 30 s extension at 72 °C. For the
reference population PV, we used a modified common
adapter where “W” was changed to “A”, to reduce the
number of target sites. The modifications in PCR
included 25 nmoles of each primer instead of 5 nmoles,
KAPA library amplification readymix (Kapa Biosystems
Cat # KK2611) instead of NEB Taq Master Mix, and
10 cycles of reaction instead of 18. Each library was
sequenced in two lanes on Illumina HiSeq 2000 at the
Genomic Sequencing and Analysis Facility at the University
of Texas at Austin, TX, USA.

Genotype SNP calling
We used the UNEAK pipeline [33] for SNP discovery
and genotype calling. The raw reads (100 bp, single end
read) obtained from the sequencer were first quality-
filtered and de-multiplexed. All reads beginning with the
expected barcodes and cut site remnant were trimmed
to 64 bp. Identical reads were grouped into one tag. Tags
with 10 or more reads across all individuals were
retained for pairwise alignment, which aimed to find tag
pairs that differed by 1 bp. For each SNP marker, the
reads distribution of the paired tags in each individual
was used for SNP genotype calling. The three possible
types of heterozygous of this autotetraploid species (i.e.,
Aaaa, AAaa and AAAa) were marked as diploid hetero-
zygous (i.e. Aa), while the two homozygous were marked
as diploid homozygous (i.e., AA or aa), according to
[20]. One genotype of the PV population that generated
a particularly low number of reads was discarded from
all statistical analyses.
The SNP calling procedure was performed on each of

the individual data sets (denoted PV_Sep and Me_Sep),
and once on a joint data set obtained after collating the
raw reads from the two sequencing runs. The latter

calling procedure was used to create a consistent SNP
naming across data sets in the absence of a reference
genome. This joint data set was then split into two parts
(denoted PV_Joint and Me_Joint) reflecting the two
reference populations.

Data filtering and imputation strategies
GBS can generate a great number of de-novo markers,
but its information is typically limited by high number
of missing values. The most-known and successful
imputation algorithms were developed for species with a
reference genome, which is missing in M. sativa,
justifying our assessment of imputation algorithms as a
function of their phenotype prediction accuracy. We
considered four possible imputation algorithms, namely,
MNI (Mean imputation), SVDI (Singular value decom-
position imputation), RFI (Random forest imputation)
and LHCI (Localized haplotype clustering imputation).
For all algorithms, we imputed a M ×N matrix of M in-
dividuals and N markers whose data points, defined in
{0,1,2,NA}, represented the three possible genotypes and
the missing value, respectively. MNI simply replaces
each missing data point with the mean of the non-
missing values for that marker, which are then discre-
tized to the closer value in {0,1,2}. The algorithm was
directly implemented as an R [34] function. SVDI oper-
ates a singular value decomposition on the genotype
matrix to obtain a set of the k most significant eigen-
vectors of the markers. These k eigen-vectors are used
as the predictors for linear regression estimation of the
missing data points, which are then discretized to the
closer value in {0,1,2}. The algorithm was implemented
using the R package “bcv” [35]. RFI uses random forest
regression [36] to grow, for each missing data point, a
set of random regression trees. We implemented RFI
using the “MissForest” [37] R package, with the config-
uration ntree = 100, maxiter = 10, parallelize = ‘variables’.
After the regression the imputed data were then discre-
tized to the closer value in {0,1,2}. LHCI is implemented
in the Beagle software [38] for use when a reference gen-
ome is available (since SNPs are imputed according to
their physical order on chromosomes). We included it as
a reference, repeating the analysis 20 times with different
random reordering of imputed SNPs and verifying ex-
perimentally that SNP order had no influence on pheno-
type prediction models.
The four data sets (PV_Sep, Me_Sep, PV_Joint and

Me_Joint) were filtered for increasing levels of allowed
missing values, excluding SNPs whose missing rate over
genotypes was greater than a fixed thresholds of 10, 20,
30, 40, 50 and 70 %. We estimated missing data accord-
ing to each of the four imputation algorithms, and then
filtered data to exclude markers with minor allele fre-
quency < 2.5 %. Filtering and missing data estimations
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were performed independently for PV_Sep and Me_Sep
data sets, and jointly for PV_Joint and Me_Joint (i.e.,
considering the joint matrix including 124 PV genotypes
plus 154 Me genotypes). Our aim was verifying whether
the greater information provided to imputation algo-
rithms by joining the two data sets could result in
greater accuracy of the genomic selection models.
We also created a COMMON data set that included

only the SNPs that were consistently present in both
data sets (hence, satisfying filtering criteria simultan-
eously for PV_Joint and Me_Joint data sets). COMMON
was filtered over the same levels of missing data, and
imputed with the four different algorithms.

Population structure analysis
We verified the need for taking account of sub-
populations and genetic structure in genomic selection
and genome-wide association analyses by two methods
applied separately to PV_Sep and Me_Sep data sets with
10 % SNP missing rate and RFI estimation of missing data.
The first contemplated a Bayesian cluster analysis by the
software STRUCTURE version 2.3 [39] using an admix-
ture model with correlated allele frequencies, assessing
the log likelihood values of posterior probability and the
criterion proposed by [40] for optimal number of geno-
type groups across group numbers varying from 1 to 5.
The analysis included six independent runs of 100,000 it-
erations preceded by a burn-in of 10,000 iterations. The
second method explored the genetic relatedness between
individuals through the analysis of the kinship matrix [41].

Phenotype prediction for genomic selection
Different statistical models have been developed for gen-
omic selection [15, 16]. We currently tested Ridge Regres-
sion BLUP, three Bayesian models, two Support Vector
Regression models, and Random Forest Regression. The
accuracy of predictions was assessed by Pearson’s correl-
ation between predicted and observed phenotypes, split-
ting randomly 90 % genotypes to a training set and 10 %
to a validation set. This cross-validation procedure was re-
peated 500 times, averaging the resulting accuracies.
Ridge regression BLUP (rrBLUP) assumes a linear

mixed additive model where each marker is assigned an
effect as a solution of the equation:

y ¼ μþ G uþ ε

where y is the vector of observed phenotypes, μ is the
mean of y, G is the genotype matrix (e.g., {0,1,2} for
biallelic SNPs), u ~N (0, Iσ2u) is the vector of marker
effects, and ε is the vector of residuals. Solving with the
standard ridge-regression method, the solution is:

û ¼ G0 G G0 þ λ Ið Þ−1 y−μð Þ

where λ = σ2e / σ2u is the ridge parameter, representing
the ratio between residual and markers variance [42].
Given the vector of effects, it is then possible to predict
phenotypes and estimate genetic breeding values. Ridge-
regression BLUP analysis was performed through the R
software package rrBLUP [43], estimating λ in a re-
stricted maximum likelihood schema implemented by a
spectral decomposition algorithm [44], and solving the
resulting linear model.
Bayesian-based models assign prior densities to

markers effects inducing different types of shrinkage.
The solution is obtained by sampling from the resulting
posterior density through a Gibbs sampling approach, as
described by [45, 46]. We examined the phenotype
prediction performances of three Bayesian prediction
models, namely: (i) Bayes A [47]; (ii) Bayes B [48]; and
(iii) the Bayesian Lasso [49]. Bayesian models were in-
vestigated by the R software package BGLR [50], using
the following parameters: number of iterations = 5000;
burn-in = 500; thinning = 5.
Support Vector Regression models are based on the

computation of a linear regression function in a high
dimensional feature space where the input data are
mapped via a kernel function [29]. We considered two
major kernel functions, namely, linear (SVR-lin) and
gaussian (SVR-gau). We used the ε-insensitive regression
present in the Weka framework [51], which ignores
residuals smaller in absolute value than some constant (ε)
and assigns a linear loss function for larger residuals. The
regression was run using the following values: C = 1,
ε = 0.1.
RFR is a combination of decision trees, each one gen-

erated from a subset of individuals selected by bootstrap
[52]. RFR uses stochastic perturbation and averages the
decision trees outputs to avoid over-fitting [53]. In this
study the R package ‘RandomForest’ [54] was used with
the following settings: number of variables tried at each
split mtry = p/3, number of trees = 500 and minimum
node size = 5.
We used SVR-lin and Ridge Regression BLUP consist-

ently for all analyses, since these models tended to
higher prediction accuracy than the other tested models.
SVR-lin and SVR-gau displayed similar accuracies, but
we preferred the former because of its faster computa-
tion time. For each reference population, genomic pre-
diction using these models was explored for 48 data sets
deriving from the combination of two SNP calling strat-
egies, four imputation algorithms and six thresholds for
missing data.
Genotypes of the COMMON data set were used for

cross-population predictions based on SVR-lin and
Ridge Regression BLUP, training the models on all geno-
types of one population to predict the phenotypes of the
other population. This analysis was performed for each
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of the six thresholds for missing data, using RFI. Pheno-
types within each population were normalized to zero
mean and unit variance prior to the analysis.

Alignment to M. truncatula genome, and genome-wide
association analysis
The Bowtie 2 tool [55] was used to query the consensus
sequence of each tag pair containing a SNP against the
M. truncatula reference genome Version 4.1 using the
verysensitivelocal preset. SNP not aligning were placed
in a fictitious chromosome N for visualization purposes.
A genome-wide association analysis was conducted
based on the EMMAX mixed model as described in [45]
and implemented through the R package rrBLUP [44].

Availability of supporting data
The data sets supporting the results of this article are
available in the NCBI’s Sequence Read Archive (SRA)
repository [Me population: http://www.ncbi.nlm.nih.gov/
sra/SRX1421601, PV population: http://www.ncbi.nlm.
nih.gov/sra/SRX1420586]. The information required to
demultiplex the raw reads are provided in [Additional
file 6] for PV data set and [Additional file 7] for Me data
set.
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forest imputation; LHCI, Localized haplotype clustering imputation)
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